Verification with ω -automata

Programs and ω -executions

- Recall: a full execution of a program is an execution that cannot be extended (either infinite or ending at a configuration without successors).
- We consider programs that may have *ω*-executions.
- We assume w.l.o.g. that every full execution of the program is infinite (see next slide).
- Therefore: full executions = ω -executions

Handling finite full executions

- 1 while x = 1 do
- 2 **if** y = 1 **then**
- 3 $x \leftarrow 0$
- $4 \quad y \leftarrow 1 x$

5 end

We artificially ensure that every full execution is infinite by adding a self-loop to every state without successors.

Verifying a program

- Goal: automatically check if some ω -execution violates a property.
- Safety property: "nothing bad happens"
 - No configuration satisfies x = 1.
 - No configuration is a deadlock.
 - Along an execution the value of *x* cannot decrease.
- Liveness property: "something good eventually happens"
 - Eventually x has value 1.
 - Every message sent during the execution is eventually received.

Safety and liveness: more precisely

- A finite execution w is bad for a given property if every potential ω-execution of the form w w' violates the property.
- A property is a safety property if every ω-execution that violates the property has a bad prefix.
 (Intuitively: after finite time we can already say that the property does not hold)
- A property is a liveness property if some ω-execution that violates the property has no bad prefix.
 (We can only tell that the property is a violation ``after

(We can only tell that the property is a violation after seeing the complete ω -execution''.)

Approach to automatic verification

- Represent the set of ω -executions of the program as a NBA. (The system NBA).
- Represent the set of possible ω-executions that violate the property as a NBA (or an ω-regular expression). (The property NBA).
- Check emptiness of the intersection of the two NBAs.

Problem: Fairness

- We may want to exclude some ω -executions because they are "unfair".
- Example: finite waiting property in Lamport's mutex algorithm.

Lamport's algorithm

Asynchronous product

- Finite waiting: If a process is trying to access the critical section, it eventually will.
- Formalization: Let NC_i, T_i, C_i be atomic propositions mapped to the sets of configurations where process *i* is in the non-critical section, trying to access it, and in the critical section, respectively. The full executions that violate finite waiting for process *i* are

 $\Sigma^* T_i \ (\Sigma \setminus C_i)^{\omega}$

• Observe: all states of the system NBA are final, and so we can intersect NBAs using the algorithm for NFAs

- The finite waiting property does not hold because of $[0,0,nc_0,nc_1] [1,0,t_0,nc_1] [1,1,t_0,t_1]^{\omega}$
- Is this a real problem of the algorithm? No! We have not specified correctly.
- Fairness assumption: both processes execute infinitely many actions.

(Usually a weaker assumption is used: if a process can execute actions infinitely often, it executes infinitely many actions.)

 Reformulation: in every fair ω-execution, if a process is trying to access the critical section, it will eventually access it.

- The violations of the property under fairness are the intersection of $\Sigma^*T_i(\Sigma \setminus C_i)^{\omega}$ and the ω -executions in which both processes make a move infinitely often.
- Problem: how do we represent this condition as an ω-regular language?
- Solution: enrich the alphabet of the NBA
 Letter: pair (*c*, *i*) where *c* is a configuration and *i* is the index of the process making the move.

- Denote by M₀ and M₁ the set of letters with index 0 and 1, respectively.
- The possible ω -executions where both processes move infinitely often is given by $\left((M_0 + M_1)^* M_0 M_1 \right)^{\omega}$
- Finite waiting holds under fairness for process 0 but not for process 1 because of

 $([0,0,nc_0,nc_1][0,1,nc_0,t_1][1,1,t_0,t_1][1,1,t_0,q_1]$ $[1,0,t_0,q_1'][1,0,c_0,q_1'][0,0,nc_0,q_1'])^{\omega}$

Temporal logic

- Writing property NBAs requires training in automata theory
- We search for a more intuitive (but still formal) description language: Temporal Logic.
- Temporal logic extends propositional logic with temporal operators like always and eventually.
- Linear Temporal Logic (LTL) is a temporal logic interpreted over linear structures.

Linear Temporal Logic (LTL)

- We are given:
 - A set AP of atomic propositions (names for basic properties)
 - A valuation assigning to each atomic proposition a set of configurations (intended meaning: the set of configurations that satisfy the property).

Example

- 1 while x = 1 do
- $2 \qquad \text{if } y = 1 \text{ then}$
- $\begin{array}{ll} 3 & x \leftarrow 0 \\ 4 & y \leftarrow 1 x \\ 5 & \text{end} \end{array}$
- AP: at_1 , at_2 , ..., at_5 , x=0, x=1, y=0, y=1
- $V(at_i) = \{ [\ell, x, y] \in C \mid \ell = i \} \text{ for every } i \in \{1, ..., 5 \}$
- $V(x=0) = \{ [\ell, x, y] \in C \mid x = 0 \}$

Computations

- A computation is an infinite sequence of subsets of *AP*.
- Examples for $AP = \{p, q\}$

 $\emptyset^{\omega} \quad (\{p\}\{p,q\})^{\omega} \quad \{p\}\{p,q\} \notin \emptyset \notin \{p\}^{\omega}$

- We map every possible execution to a computation by mapping each configuration to the set of atomic propositions it satisfies.
- A computation is executable if some ω -execution maps to it.

ω -executions:

 $e_{2} = ([1,1,0] [2,1,0] [4,1,0])^{\omega}$ $e_{3} = [1,0,1] [5,0,1]^{\omega}$ $e_{4} = [1,1,1] [2,1,1] [3,1,1] [4,0,1] [1,0,1] [5,0,1]^{\omega}$

 $e_1 = [1,0,0] [5,0,0]^{\omega}$

Example

$$\sigma_1 = \{at1, x=0, y=0\} \{at5, x=0, y=0\}^{\omega}$$

$$\sigma_2 = (\{at1, x=0, y=0\} \{at2, x=1, y=0\} \{at4, x=1, y=0\})^{\omega}$$

$$\sigma_1 = \{at1, x=0, y=0\} \{at5, x=0, y=0\}^{\omega}$$

$$e_2 = ([1,1,0] [2,1,0] [4,1,0])^{\omega}$$

$$e_1 = [1,0,0] [5,0,0]^{\omega}$$

From executions to computations

Syntax of LTL

- Given: set *AP* of atomic propositions, valuation assigning to each atomic proposition a set configurations.
- The formulas of LTL are given by the syntax: $\varphi ::= \mathbf{true} | p | \neg \varphi_1 | \varphi_1 \land \varphi_2 | X \varphi_1 | \varphi_1 U \varphi_2$

where $p \in AP$

Semantics of LTL

- Formulas are interpreted on computations (executable or not).
- The satisfaction relation $\sigma \models \varphi$ is given by:

 $\sigma \models \mathbf{true}$ $\sigma \models p \text{ iff } p \in \sigma(0)$ $\sigma \vDash \neg \varphi$ iff not $\sigma \vDash \varphi$ $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$ $\sigma \models X \varphi \text{ iff } \sigma^1 \models \varphi$ $\sigma \models \varphi_1 \cup \varphi_2$ iff there is $k \ge 0$ s.t.: $\sigma^k \models \varphi_2$ and $\sigma^i \models \varphi_1$ for all $0 \le i < k$

Abbreviations

- The boolean abbreviations false, ∨, →, ↔ etc. are defined as usual.
- $F\varphi \coloneqq \mathbf{true} \cup \varphi$ (eventually φ).

According to the semantics:

 $\sigma \models F\varphi$ iff there is $k \ge 0$ s.t. $\sigma^k \models \varphi$

• $G\varphi \coloneqq \neg F \neg \varphi$ (always φ or globally φ).

According to the semantics:

 $\sigma \models G\varphi$ iff $\sigma^k \models \varphi$ for every $k \ge 0$

Getting used to LTL

- Express in natural language FGp, GFp
- Are these pairs of formulas equivalent?

	Fp GFp $p \cup (p \land q)$	GGp FGFp	•
Fp Gp	$p \lor XFp$ $p \lor XGp$	Fp Gp	$p \wedge XFp$ $p \wedge XGp$
$p \cup q$	$p \lor X (p \sqcup q)$ $q \lor X (p \sqcup q)$ $q \lor (p \land X (p \sqcup q)$	$p \cup q$	$p \land X (p \cup q)$ $q \land X (p \cup q)$ $q \land (p \lor X (p \cup q))$

Expressing properties of a program

• AP: at_1 , at_2 ,..., at_5 , x=0, x=1, y=0, y=1

 $V(at_i) = \{ [\ell, x, y] \in C \mid \ell = i \} \text{ for every } i \in \{1, \dots, 5\}$ $V(x=0) = \{ [\ell, x, y] \in C \mid x=0 \}$

- $\varphi_0 = x=1 \land X y=1 \land X X at3$
- $\varphi_1 = F x=0$
- $\varphi_2 = x=0 \text{ U at5}$
- $\varphi_3 = y=1 \wedge F(x=0 \wedge at5) \wedge \neg (F(y=0 \wedge Xy=1))$

Expressing properties of Lamport's algorithm

- $AP = \{ NC_0, T_0, C_0, NC_1, T_1, C_1, M_0, M_1 \}$ Valuation as expected.
- Mutual exclusion: $G(\neg C_0 \lor \neg C_1)$
- Finite waiting: $G(T_0 \rightarrow FC_0) \wedge G(T_1 \rightarrow FC_1)$
- Fair finite waiting: $(GF M_0 \wedge GF M_1) \rightarrow (G(T_0 \rightarrow FC_0) \wedge G(T_1 \rightarrow FC_1))$

Expressing properties of Lamport's algorithm

• Bounded overtaking:

$$\mathsf{G}\left(T_0 \to \left(\neg C_1 \,\mathsf{U}\left(C_1 \,\mathsf{U}\left(\neg C_1 \,\mathsf{U}\left(\neg C_0\right)\right)\right)\right)$$

Whenever T_0 holds, the computation continues with a (possibly empty) interval at which $\neg C_1$ holds, followed by

a (possibly empty) interval at which C_1 holds,

followed by

a point at which C_0 holds.

From formulas to NBAs

- Given: set *AP* of atomic propositions
- Language L(φ) of a formula φ : set of computations satisfying φ.
- Examples for $AP = \{p, q\}$
 - -L(Fp) =computations $s_1s_2s_3$... such that $p \in s_i$ for some $i \ge 1$
 - $-L(\mathsf{G}(p \wedge q)) = \{\{p,q\}^{\omega}\}\$
- $L(\varphi)$ is an ω -language over the alphabet 2^{AP}
- For $AP = \{p, q\}$ we get $2^{AP} = \{\emptyset, \{p\}, \{q\}, \{p, q\}\}$

NBAs for some formulas

 $AP = \{p, q\}$

- Gp
- *p* U *q*
- GF*p*

From LTL formulas to NGAs

We present an algorithm that takes a formula φ over a fixed set AP of atomic propositions as input and returns a NGA A_{φ} such that $L(A_{\varphi}) = L(\varphi)$.

Closure of a formula

- Define $\operatorname{neg}(\varphi) = \begin{cases} \psi & \text{if } \varphi = \neg \psi \\ \neg \varphi & \text{otherwise} \end{cases}$
- The closure cl(φ) of φ is the set containing ψ and neg(ψ) for every subformula ψ of φ
- Example:

 $cl(p \cup \neg q) = \{p, \neg p, \neg q, q, p \cup \neg q, \neg (p \cup \neg q)\}$

 The satisfaction sequence of a computation s₀s₁s₂ ... with respect to φ is the sequence α₀α₁α₂ ... where α_i contains the formulas of cl(φ) satisfied by s_is_{i+1}s_{i+2} ...

- The satisfaction sequence of a computation s₀s₁s₂ ... with respect to φ is the sequence α₀α₁α₂ ... where α_i contains the formulas of cl(φ) satisfied by s_is_{i+1}s_{i+2} ...
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. $p \cup q$ is:

- The satisfaction sequence of a computation s₀s₁s₂ ... with respect to φ is the sequence α₀α₁α₂ ... where α_i contains the formulas of cl(φ) satisfied by s_is_{i+1}s_{i+2} ...
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. $p \cup q$ is:

 $\{p, \neg q, \neg (p \cup q)\}^{\omega}$

- The satisfaction sequence of a computation s₀s₁s₂ ... with respect to φ is the sequence α₀α₁α₂ ... where α_i contains the formulas of cl(φ) satisfied by s_is_{i+1}s_{i+2} ...
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. $p \cup q$ is:

 $\{p, \neg q, \neg (p \cup q)\}^{\omega}$

The satisfaction sequence of ({p}{q})^ω w.r.t.
 p U q is:

- The satisfaction sequence of a computation $s_0 s_1 s_2 \dots$ with respect to φ is the sequence $\alpha_0 \alpha_1 \alpha_2 \dots$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_i s_{i+1} s_{i+2} \dots$
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. $p \cup q$ is:

 $\{p, \neg q, \neg (p \cup q)\}^{\omega}$

• The satisfaction sequence of $(\{p\}\{q\})^{\omega}$ w.r.t. $p \cup q$ is:

 $(\{ p, \neg q, p \cup q \} \{ \neg p, q, p \cup q \})^{\omega}$

• Goal for the next slides: give a syntactic characterization of the satisfaction sequence

Atoms

Intuition: an atom is a "maximal set of formulas of *cl(φ)* that can be simultaneously true if one only knows the meaning of ¬ and ∧"

- Intuition: an atom is a "maximal set of formulas of $cl(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \wedge "
- A set α ⊆ cl(φ) is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \land \psi_2 \in cl(\varphi)$, $\psi_1 \land \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$

- Intuition: an atom is a "maximal set of formulas of *cl(φ)* that can be simultaneously true if one only knows the meaning of ¬ and ∧"
- A set α ⊆ cl(φ) is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \land \psi_2 \in cl(\varphi)$, $\psi_1 \land \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$
- Examples of atoms for $\varphi = \neg (p \land q) \cup Fp$: $\{\neg p, \neg q, \neg (p \land q), Fp, \varphi\} \{p, q, (p \land q), \neg Fp, \neg \varphi\}$

- Intuition: an atom is a "maximal set of formulas of cl(φ) that can be simultaneously true if one only knows the meaning of ¬ and ∧"
- A set α ⊆ cl(φ) is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \land \psi_2 \in cl(\varphi)$, $\psi_1 \land \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$
- Examples of atoms for $\varphi = \neg (p \land q) \cup Fp$: $\{\neg p, \neg q, \neg (p \land q), Fp, \varphi\} \{p, q, (p \land q), \neg Fp, \neg \varphi\}$
- Examples of non-atoms for $\varphi = \neg (p \land q) \cup Fp$:

- Intuition: an atom is a "maximal set of formulas of *cl(φ)* that can be simultaneously true if one only knows the meaning of ¬ and ∧"
- A set α ⊆ cl(φ) is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \land \psi_2 \in cl(\varphi)$, $\psi_1 \land \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$
- Examples of atoms for $\varphi = \neg (p \land q) \cup Fp$: $\{\neg p, \neg q, \neg (p \land q), Fp, \varphi\} \{p, q, (p \land q), \neg Fp, \neg \varphi\}$
- Examples of non-atoms for $\varphi = \neg (p \land q) \cup Fp$:

 $\{p, q, p \land q, Fp\} \{\neg p, q, p \land q, Fp, \varphi\}$

- Intuition: an atom is a "maximal set of formulas of *cl(φ)* that can be simultaneously true if one only knows the meaning of ¬ and ∧"
- A set α ⊆ cl(φ) is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \land \psi_2 \in cl(\varphi)$, $\psi_1 \land \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$
- Examples of atoms for $\varphi = \neg (p \land q) \cup Fp$: $\{\neg p, \neg q, \neg (p \land q), Fp, \varphi\} \{p, q, (p \land q), \neg Fp, \neg \varphi\}$
- Examples of non-atoms for $\varphi = \neg (p \land q) \cup Fp$:

 $\{p, q, p \land q, Fp\} \{\neg p, q, p \land q, Fp, \varphi\}$

• We have: all elements of a satisfaction sequence are atoms

Pre-Hintikka sequences

- A pre-Hinttika sequence for φ is a sequence $\alpha_0 \alpha_1 \alpha_2 \dots$ of atoms satisfying the following conditions for every $i \ge 0$:
 - For every $X\psi \in cl(\varphi)$: $X\psi \in \alpha_i$ iff $\psi \in \alpha_{i+1}$
 - For every $\psi_1 \cup \psi_2 \in cl(\varphi)$: $\psi_1 \cup \psi_2 \in \alpha_i \text{ iff } \psi_2 \in \alpha_i \text{ or } \psi_1 \in \alpha_i \text{ and } \psi_1 \cup \psi_2 \in \alpha_{i+1}$

Pre-Hintikka sequences

- A pre-Hinttika sequence for φ is a sequence $\alpha_0 \alpha_1 \alpha_2 \dots$ of atoms satisfying the following conditions for every $i \ge 0$:
 - For every $X\psi \in cl(\varphi)$: $X\psi \in \alpha_i$ iff $\psi \in \alpha_{i+1}$
 - For every $\psi_1 \cup \psi_2 \in cl(\varphi)$: $\psi_1 \cup \psi_2 \in \alpha_i \text{ iff } \psi_2 \in \alpha_i \text{ or } \psi_1 \in \alpha_i \text{ and } \psi_1 \cup \psi_2 \in \alpha_{i+1}$
- We have: every satisfaction sequence is a pre-Hintikka sequence.

Hintikka sequences

- A pre-Hinttika sequence $\alpha_0 \alpha_1 \alpha_2$... is a Hinttika sequence if it satisfies for every $i \ge 0$:
 - For every $\psi_1 \cup \psi_2 \in cl(\varphi)$: if $\psi_1 \cup \psi_2 \in \alpha_i$ then there exists $j \ge i$ such that $\psi_2 \in \alpha_j$
- We have: every satisfaction sequence is a Hintikka sequence.

• Let $\varphi = \neg (p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences ?

• Let $\varphi = \neg (p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences?

1. $\{p, \neg q, r, s, \varphi\}^{\omega}$

- Let $\varphi = \neg (p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences ?
 - 1. $\{p, \neg q, r, s, \varphi\}^{\omega}$
 - 2. $\{\neg p, r, \neg \varphi\}^{\omega}$

- Let $\varphi = \neg (p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences?
 - 1. $\{p, \neg q, r, s, \varphi\}^{\omega}$

$$2. \quad \{\neg p, r, \neg \varphi\}^{\omega}$$

3.
$$\{\neg p, q, \neg r, (r \land s), \neg \phi\}^{\omega}$$

- Let $\varphi = \neg (p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences ?
 - 1. $\{p, \neg q, r, s, \varphi\}^{\omega}$
 - 2. $\{\neg p, r, \neg \varphi\}^{\omega}$
 - 3. $\{\neg p, q, \neg r, (r \land s), \neg \phi\}^{\omega}$
 - 4. $\{p, q, (p \land q), r, s, (r \land s), \neg \phi\}$

- Let $\varphi = \neg (p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences ?
 - 1. $\{p, \neg q, r, s, \varphi\}^{\omega}$
 - 2. $\{\neg p, r, \neg \varphi\}^{\omega}$
 - 3. $\{\neg p, q, \neg r, (r \land s), \neg \varphi\}^{\omega}$
 - 4. $\{p, q, (p \land q), r, s, (r \land s), \neg \varphi\}$
 - 5. $\{p, \neg q, \neg (p \land q), \neg r, s, \neg (r \land s), \varphi\}^{\omega}$

- Let $\varphi = \neg (p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences ?
 - 1. $\{p, \neg q, r, s, \varphi\}^{\omega}$
 - 2. $\{\neg p, r, \neg \varphi\}^{\omega}$
 - 3. $\{\neg p, q, \neg r, (r \land s), \neg \varphi\}^{\omega}$
 - 4. $\{p, q, (p \land q), r, s, (r \land s), \neg \varphi\}^{\omega}$
 - 5. $\{p, \neg q, \neg (p \land q), \neg r, s, \neg (r \land s), \varphi\}^{\omega}$
 - 6. $\{p,q,(p \land q),r,s,(r \land s),\varphi\}^{\omega}$

Main theorem

- Definition: A Hintikka sequence $\alpha_0 \alpha_1 \alpha_2 \dots$ extends a computation $s_0 s_1 s_2 \dots$ if $s_i \cap cl(\varphi) = \alpha_i \cap AP$ for every $i \ge 0$.
- Theorem: Every computation s₀s₁s₂ ... can be extended to a unique Hintikka sequence, and this extension is the satisfaction sequence.

Strategy for the NGA of a formula

• Let σ be a computation over AP.

Strategy for the NGA of a formula

- Let σ be a computation over AP.
- We have: $\sigma \vDash \varphi$

iff φ belongs to the first set of the satisfaction sequence for σ
iff φ belongs to the first set of the Hintikka sequence for σ

Strategy for the NGA of a formula

- Let σ be a computation over AP.
- We have: $\sigma \vDash \varphi$

iff φ belongs to the first set of the
satisfaction sequence for σ iff φ belongs to the first set of the
Hintikka sequence for σ

- Strategy: design the NGA so that for every σ
 - The runs on σ correspond to the pre-Hintikka sequences $\alpha_0 \alpha_1 \alpha_2 \dots$ that extend σ and satisfy $\varphi \in \alpha_0$
 - A run is accepting iff its corresponding pre-Hintikka sequence is also a Hintikka sequence.

• Alphabet: 2^{AP}

- Alphabet: 2^{AP}
- States: atoms of φ .

- Alphabet: 2^{AP}
- States: atoms of φ .
- Initial states: atoms containing φ .

The NGA A_{φ}

- Alphabet: 2^{AP}
- States: atoms of φ .
- Initial states: atoms containing φ .
- Transitions: triples $\alpha \xrightarrow{s} \beta$ such that $\alpha \cap AP = s$ and $\alpha \beta$ satisfies the conditions of a pre-Hintikka sequence.

The NGA A_{φ}

- Alphabet: 2^{AP}
- States: atoms of φ .
- Initial states: atoms containing φ .
- Transitions: triples $\alpha \xrightarrow{s} \beta$ such that $\alpha \cap AP = s$ and $\alpha \beta$ satisfies the conditions of a pre-Hintikka sequence.
- Sets of accepting states: A set $F_{\psi_1 U \psi_2}$ for every until-subformula $\psi_1 U \psi_2$ of φ .

 $F_{\psi_1 U \psi_2}$ contains the atoms α such that $\psi_1 U \psi_2 \notin \alpha$ or $\psi_2 \in \alpha$.

Example: The NGA $A_{p \cup q}$

(Labels of transitions omitted. The label of a transition from atom α is the set { $p \in AP \mid p \in \alpha$ }. There is only one set of accepting states.)

Some observations

- All transitions leaving a state carry the same label.
- For every computation $s_0s_1s_2$... satisfying φ there is a unique accepting run $\alpha_0 \xrightarrow{s_0} \alpha_1 \xrightarrow{s_1} \alpha_2 \xrightarrow{s_2} \cdots$, namely the one such that $\alpha_0 \alpha_1 \alpha_2 \ldots$ is the satisfaction sequence for $s_0s_1s_2\ldots$
- The sets of computations accepted from each initial state are pairwise disjoint.
- The number of states is bounded by $2^{|\varphi|}$.