
Verification with 휔-automata

Programs and 휔-executions

• Recall: a full execution of a program is an
execution that cannot be extended (either infinite
or ending at a configuration without successors).

• We consider programs that may have
휔-executions.

• We assume w.l.o.g. that every full execution of
the program is infinite (see next slide).

• Therefore: full executions = 휔-executions

Handling finite full executions

We artificially ensure that every full
execution is infinite by adding a self-
loop to every state without successors.

Verifying a program

• Goal: automatically check if some 휔-execution violates a
property.

• Safety property: “nothing bad happens”
– No configuration satisfies 푥 = 1.
– No configuration is a deadlock.
– Along an execution the value of 푥 cannot decrease.

• Liveness property: “something good eventually happens”
– Eventually 푥 has value 1.
– Every message sent during the execution is eventually

received.

Safety and liveness: more precisely

• A finite execution 푤 is bad for a given property if every
potential 휔-execution of the form 푤 푤′ violates the
property.

• A property is a safety property if every 휔-execution
that violates the property has a bad prefix.
(Intuitively: after finite time we can already say that the
property does not hold)

• A property is a liveness property if some 휔-execution
that violates the property has no bad prefix.
(We can only tell that the property is a violation ``after
seeing the complete 휔-execution’’.)

Approach to automatic verification

• Represent the set of 휔-executions of the program
as a NBA. (The system NBA).

• Represent the set of possible 휔-executions that
violate the property as a NBA (or an 휔-regular
expression). (The property NBA).

• Check emptiness of the intersection of the two
NBAs.

Problem: Fairness

• We may want to exclude some 휔-executions
because they are “unfair”.

• Example: finite waiting property in Lamport‘s
mutex algorithm.

Lamport´s algorithm

Asynchronous product

Finite waiting property

• Finite waiting: If a process is trying to access the critical
section, it eventually will.

• Formalization: Let 푁퐶 , 푇 , 퐶 be atomic propositions
mapped to the sets of configurations where process 푖
is in the non-critical section, trying to access it, and in
the critical section, respectively.
The full executions that violate finite waiting for
process 푖 are

Σ∗푇 Σ ∖ 퐶

• Observe: all states of the system NBA are final, and so
we can intersect NBAs using the algorithm for NFAs

Finite waiting property

• The finite waiting property does not hold because of

0,0,푛푐 ,푛푐 1,0, 푡 ,푛푐 1,1, 푡 , 푡
• Is this a real problem of the algorithm?

No! We have not specified correctly.
• Fairness assumption: both processes execute infinitely

many actions.
(Usually a weaker assumption is used: if a process can execute
actions infinitely often, it executes infinitely many actions.)

• Reformulation: in every fair 휔-execution, if a process is
trying to access the critical section, it will eventually
access it.

Finite waiting property

• The violations of the property under fairness are the
intersection of Σ∗푇 Σ ∖ 퐶 and the 휔-executions
in which both processes make a move infinitely
often.

• Problem: how do we represent this condition as an
휔-regular language?

• Solution: enrich the alphabet of the NBA
Letter: pair (푐, 푖) where 푐 is a configuration and 푖 is
the index of the process making the move.

Finite waiting property

• Denote by 푀 and 푀 the set of letters with
index 0 and 1, respectively.

• The possible 휔-executions where both processes
move infinitely often is given by

푀 + 푀 ∗푀 푀
• Finite waiting holds under fairness for process 0

but not for process 1 because of
(0,0,푛푐 ,푛푐 0,1,푛푐 , 푡 1,1, 푡 , 푡 1,1, 푡 , 푞

1,0, 푡 , 푞 1,0, 푐 , 푞 0,0,푛푐 , 푞)

Temporal logic

• Writing property NBAs requires training in
automata theory

• We search for a more intuitive (but still
formal) description language: Temporal Logic.

• Temporal logic extends propositional logic
with temporal operators like always and
eventually.

• Linear Temporal Logic (LTL) is a temporal logic
interpreted over linear structures.

Linear Temporal Logic (LTL)

• We are given:
– A set 퐴푃 of atomic propositions (names for basic

properties)
– A valuation assigning to each atomic proposition a

set of configurations (intended meaning: the set of
configurations that satisfy the property).

Example

• 퐴푃 : at , at , … , at , x=0, x=1, y=0, y=1

• 푉 at = ℓ, 푥, 푦 ∈ 퐶 ℓ = 푖} for every 푖 ∈ {1, … , 5}

• 푉(x=0)= ℓ, 푥,푦 ∈ 퐶 x = 0}

Computations

• A computation is an infinite sequence of subsets of 퐴푃.
• Examples for 퐴푃 = {푝, 푞}

∅ 푝 푝, 푞 푝 푝, 푞 ∅ ∅ 푝
• We map every possible execution to a computation by

mapping each configuration to the set of atomic
propositions it satisfies.

• A computation is executable if some 휔-execution maps
to it.

Example

푒 = 1,0,0 5,0,0

푒 = 1,1,0 2,1,0 4,1,0

푒 = 1,0,1 5,0,1

푒 = 1,1,1 2,1,1 3,1,1 4,0,1 1,0,1 5,0,1

휔-executions:

From executions to computations

푒 = 1,0,0 5,0,0

푒 = 1,1,0 2,1,0 4,1,0

휎 = {at1, x=0, y=0} {at5, x=0, y=0}

휎 = (at1, x=0, y=0 at2, x=1, y=0 at4, x=1, y=0)

Syntax of LTL

• Given: set 퐴푃 of atomic propositions, valuation
assigning to each atomic proposition a set
configurations.

• The formulas of LTL are given by the syntax:

휑 ∷= 퐭퐫퐮퐞 푝 ¬휑 휑 ∧ 휑 X휑 | 휑 U휑

where 푝 ∈ 퐴푃

Semantics of LTL

• Formulas are interpreted on computations (executable
or not).

• The satisfaction relation 휎 ⊨ 휑 is given by:

휎 ⊨ 퐭퐫퐮퐞
휎 ⊨ 푝 iff 푝 ∈ 휎 0
휎 ⊨ ¬휑 iff not 휎 ⊨ 휑
휎 ⊨ 휑 ∧ 휑 iff 휎 ⊨ 휑 and 휎 ⊨ 휑
휎 ⊨ X휑 iff 휎 ⊨ 휑
휎 ⊨ 휑 U휑 iff there is 푘 ≥ 0 s. t. :휎 ⊨ 휑 and

휎 ⊨ 휑 for all 0 ≤ 푖 < 푘

Abbreviations

• The boolean abbreviations false, ∨,→,↔ etc. are
defined as usual.

• F휑 ≔ true U 휑 (eventually 휑).

According to the semantics:

휎 ⊨ F휑 iff there is 푘 ≥ 0 s. t. 휎 ⊨ 휑
• G휑 ≔ ¬ F¬휑 (always 휑 or globally 휑).

According to the semantics:

휎 ⊨ G휑 iff 휎 ⊨ 휑 for every 푘 ≥ 0

Getting used to LTL

• Express in natural language FG푝, GF푝
• Are these pairs of formulas equivalent?

FF푝 F푝
FG푝 GF푝
푝 U 푞 푝 U (푝 ∧ 푞)

GG푝 G푝
FGF푝 GF푝

F푝 푝 ∨ XF푝
G푝 푝 ∨ XG푝

F푝 푝 ∧ XF푝
G푝 푝 ∧ XG푝

푝 U 푞 푝 ∨ X 푝 U 푞
푝 U 푞 푞 ∨ X 푝 U 푞
푝 U 푞 푞 ∨ (푝 ∧ X 푝 U 푞

푝 U 푞 푝 ∧ X 푝 U 푞
푝 U 푞 푞 ∧ X 푝 U 푞
푝 U 푞 푞 ∧ (푝 ∨ X 푝 U 푞

Expressing properties of a program

• 퐴푃 : at , at , … , at , x=0, x=1, y=0, y=1

푉 at = ℓ,푥,푦 ∈ 퐶 ℓ = 푖} for every 푖 ∈ {1, … , 5}

푉(x=0)= ℓ, 푥, 푦 ∈ 퐶 x=0}

• 휑 = x=1 ∧ X y=1 ∧ X X at3

• 휑 = F x=0

• 휑 = x=0 U at5

• 휑 = y=1 ∧ F(x=0 ∧ at5) ∧ ¬(F y=0 ∧ X y=1)

Expressing properties of Lamport´s algorithm

• 퐴푃 = { 푁퐶 ,푇 ,퐶 ,푁퐶 ,푇 ,퐶 ,푀 ,푀 }

Valuation as expected.

• Mutual exclusion: G (¬퐶 ∨ ¬퐶)

• Finite waiting: G 푇 → F퐶 ∧ G 푇 → F퐶

• Fair finite waiting:
(GF 푀 ∧ GF 푀) → G 푇 → F퐶 ∧ G 푇 → F퐶

Expressing properties of Lamport´s algorithm

• Bounded overtaking:

G 푇 → ¬퐶 U 퐶 U ¬퐶 U 퐶

Whenever 푇 holds, the computation continues with

a (possibly empty) interval at which ¬퐶 holds,

followed by

a (possibly empty) interval at which 퐶 holds,

followed by

a point at which 퐶 holds.

From formulas to NBAs

• Given: set 퐴푃 of atomic propositions
• Language 퐿 휑 of a formula 휑 : set of

computations satisfying 휑.
• Examples for 퐴푃 = {푝, 푞}

– 퐿 F푝 = computations 푠 푠 푠 … such that 푝 ∈ 푠 for
some 푖 ≥ 1

– 퐿 G 푝 ∧ 푞 = { 푝, 푞 }

• 퐿(휑) is an 휔-language over the alphabet 2
• For 퐴푃 = {푝, 푞} we get 2 = {∅, 푝 , 푞 , 푝, 푞 }

NBAs for some formulas

퐴푃 = {푝, 푞}

• F푝

• G푝

• 푝 U 푞

• GF푝

From LTL formulas to NGAs

We present an algorithm that takes a formula 휑 over a
fixed set 퐴푃 of atomic propositions as input and returns
a NGA 퐴 such that 퐿 퐴 = 퐿 휑 .

Closure of a formula

• Define neg 휑 = 휓 if 휑 = ¬휓
¬휑 otherwise

• The closure 푐푙(휑) of 휑 is the set containing 휓 and
neg 휓 for every subformula 휓 of 휑

• Example:

푐푙 푝 U¬푞 = {푝, ¬푝, ¬푞, 푞,푝U¬푞, ¬ 푝U¬푞 }

Satisfaction sequence

• The satisfaction sequence of a computation
푠 푠 푠 … with respect to 휑 is the sequence
훼 훼 훼 … where 훼 contains the formulas of
푐푙(휑) satisfied by 푠 푠 푠 …

• The satisfaction sequence of 푝 w.r.t. 푝 푈 푞 is:

푝, ¬푞, ¬ 푝 푈 푞
• The satisfaction sequence of (푝 푞) w.r.t.
푝 푈 푞 is:

푝, ¬푞, 푝 푈 푞 ¬푝, 푞, 푝 푈 푞

Satisfaction sequence

• The satisfaction sequence of a computation
푠 푠 푠 … with respect to 휑 is the sequence
훼 훼 훼 … where 훼 contains the formulas of
푐푙(휑) satisfied by 푠 푠 푠 …

• The satisfaction sequence of 푝 w.r.t. 푝 U 푞 is:

푝, ¬푞, ¬ 푝 푈 푞
• The satisfaction sequence of (푝 푞) w.r.t.
푝 푈 푞 is:

푝, ¬푞, 푝 푈 푞 ¬푝, 푞, 푝 푈 푞

Satisfaction sequence

• The satisfaction sequence of a computation
푠 푠 푠 … with respect to 휑 is the sequence
훼 훼 훼 … where 훼 contains the formulas of
푐푙(휑) satisfied by 푠 푠 푠 …

• The satisfaction sequence of 푝 w.r.t. 푝 U 푞 is:

푝, ¬푞, ¬ 푝 U 푞
• The satisfaction sequence of (푝 푞) w.r.t.
푝 푈 푞 is:

푝, ¬푞, 푝 푈 푞 ¬푝, 푞, 푝 푈 푞

Satisfaction sequence

• The satisfaction sequence of a computation
푠 푠 푠 … with respect to 휑 is the sequence
훼 훼 훼 … where 훼 contains the formulas of
푐푙(휑) satisfied by 푠 푠 푠 …

• The satisfaction sequence of 푝 w.r.t. 푝 U 푞 is:

푝, ¬푞, ¬ 푝 U 푞
• The satisfaction sequence of (푝 푞) w.r.t.
푝 U 푞 is:

푝, ¬푞, 푝 푈 푞 ¬푝, 푞, 푝 푈 푞

Satisfaction sequence

• The satisfaction sequence of a computation
푠 푠 푠 … with respect to 휑 is the sequence 훼 훼 훼 …
where 훼 contains the formulas of 푐푙(휑) satisfied by
푠 푠 푠 …

• The satisfaction sequence of 푝 w.r.t. 푝 U 푞 is:

푝, ¬푞, ¬ 푝 U 푞
• The satisfaction sequence of (푝 푞) w.r.t. 푝 U 푞 is:

 푝, ¬푞,푝 U 푞 ¬푝, 푞, 푝 U 푞

• Goal for the next slides: give a syntactic characterization
of the satisfaction sequence

Atoms

• Intuition: an atom is a “maximal set of formulas of 푐푙(휑) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set 훼 ⊆ 푐푙(휑) is an atom if it satisfies the following two
conditions:

– For every 휓 ∈ 푐푙 휑 , exactly one of 휓 and neg(휓) belong to 훼

– For every 휓 ∧ 휓 ∈ 푐푙(휑), 휓 ∧ 휓 ∈ 훼 iff 휓 ∈ 훼 and 휓 ∈ 훼

• Examples of atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
¬푝, ¬푞, ¬ 푝 ∧ 푞 , F푝,휑 푝, 푞, 푝 ∧ 푞 , ¬F푝, ¬휑

• Examples of non-atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
 푝, 푞,푝 ∧ 푞, F푝 푝 ∧ 푞, F푝,휑

Atoms

• Intuition: an atom is a “maximal set of formulas of 푐푙(휑) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set 훼 ⊆ 푐푙(휑) is an atom if it satisfies the following two
conditions:

– For every 휓 ∈ 푐푙 휑 , exactly one of 휓 and neg(휓) belong to 훼

– For every 휓 ∧ 휓 ∈ 푐푙(휑), 휓 ∧ 휓 ∈ 훼 iff 휓 ∈ 훼 and 휓 ∈ 훼

• Examples of atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
¬푝, ¬푞, ¬ 푝 ∧ 푞 , F푝,휑 푝, 푞, 푝 ∧ 푞 , ¬F푝, ¬휑

• Examples of non-atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
 푝, 푞,푝 ∧ 푞, F푝 푝 ∧ 푞, F푝,휑

Atoms

• Intuition: an atom is a “maximal set of formulas of 푐푙(휑) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set 훼 ⊆ 푐푙(휑) is an atom if it satisfies the following two
conditions:

– For every 휓 ∈ 푐푙 휑 , exactly one of 휓 and neg(휓) belong to 훼

– For every 휓 ∧ 휓 ∈ 푐푙(휑), 휓 ∧ 휓 ∈ 훼 iff 휓 ∈ 훼 and 휓 ∈ 훼

• Examples of atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
¬푝, ¬푞, ¬ 푝 ∧ 푞 , F푝,휑 푝, 푞, 푝 ∧ 푞 , ¬F푝, ¬휑

• Examples of non-atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
 푝, 푞,푝 ∧ 푞, F푝 푝 ∧ 푞, F푝,휑

Atoms

• Intuition: an atom is a “maximal set of formulas of 푐푙(휑) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set 훼 ⊆ 푐푙(휑) is an atom if it satisfies the following two
conditions:

– For every 휓 ∈ 푐푙 휑 , exactly one of 휓 and neg(휓) belong to 훼

– For every 휓 ∧ 휓 ∈ 푐푙(휑), 휓 ∧ 휓 ∈ 훼 iff 휓 ∈ 훼 and 휓 ∈ 훼

• Examples of atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
¬푝, ¬푞, ¬ 푝 ∧ 푞 , F푝,휑 푝, 푞, 푝 ∧ 푞 , ¬F푝, ¬휑

• Examples of non-atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
 푝, 푞,푝 ∧ 푞, F푝 푝 ∧ 푞, F푝,휑

Atoms

• Intuition: an atom is a “maximal set of formulas of 푐푙(휑) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set 훼 ⊆ 푐푙(휑) is an atom if it satisfies the following two
conditions:

– For every 휓 ∈ 푐푙 휑 , exactly one of 휓 and neg(휓) belong to 훼

– For every 휓 ∧ 휓 ∈ 푐푙(휑), 휓 ∧ 휓 ∈ 훼 iff 휓 ∈ 훼 and 휓 ∈ 훼

• Examples of atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
¬푝, ¬푞, ¬ 푝 ∧ 푞 , F푝,휑 푝, 푞, 푝 ∧ 푞 , ¬F푝, ¬휑

• Examples of non-atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
 푝, 푞,푝 ∧ 푞, F푝 ¬푝, 푞,푝 ∧ 푞, F푝,휑

• We have: all elements of a satisfaction sequence are atoms

Atoms

• Intuition: an atom is a “maximal set of formulas of 푐푙(휑) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set 훼 ⊆ 푐푙(휑) is an atom if it satisfies the following two
conditions:

– For every 휓 ∈ 푐푙 휑 , exactly one of 휓 and neg(휓) belong to 훼

– For every 휓 ∧ 휓 ∈ 푐푙(휑), 휓 ∧ 휓 ∈ 훼 iff 휓 ∈ 훼 and 휓 ∈ 훼

• Examples of atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
¬푝, ¬푞, ¬ 푝 ∧ 푞 , F푝,휑 푝, 푞, 푝 ∧ 푞 , ¬F푝, ¬휑

• Examples of non-atoms for 휑 = ¬(푝 ∧ 푞) U F푝 :
 푝, 푞,푝 ∧ 푞, F푝 ¬푝, 푞,푝 ∧ 푞, F푝,휑

• We have: all elements of a satisfaction sequence are atoms

Pre-Hintikka sequences

• A pre-Hinttika sequence for 휑 is a sequence 훼 훼 훼 … of
atoms satisfying the following conditions for every 푖 ≥ 0:
– For every X휓 ∈ 푐푙 휑 :
X휓 ∈ 훼 iff 휓 ∈ 훼

– For every 휓 U 휓 ∈ 푐푙(휑) :
휓 U 휓 ∈ 훼 iff 휓 ∈ 훼 or 휓 ∈ 훼 and 휓 U 휓 ∈ 훼

• A pre-Hinttika sequence is a Hinttika sequence if it also
satisfies:
– For every 휓 푈 휓 ∈ 푐푙(휑) :

there exists 푗 ≥ 푖 such that 휓 ∈ 훼

Pre-Hintikka sequences

• A pre-Hinttika sequence for 휑 is a sequence 훼 훼 훼 … of
atoms satisfying the following conditions for every 푖 ≥ 0:
– For every X휓 ∈ 푐푙 휑 :
X휓 ∈ 훼 iff 휓 ∈ 훼

– For every 휓 U 휓 ∈ 푐푙(휑) :
휓 U 휓 ∈ 훼 iff 휓 ∈ 훼 or 휓 ∈ 훼 and 휓 U 휓 ∈ 훼

• We have: every satisfaction sequence is a pre-Hintikka
sequence.
– For every 휓 푈 휓 ∈ 푐푙(휑) :

there exists 푗 ≥ 푖 such that 휓 ∈ 훼

Hintikka sequences

• A pre-Hinttika sequence 훼 훼 훼 …is a Hinttika sequence
if it satisfies for every 푖 ≥ 0:
– For every 휓 U 휓 ∈ 푐푙(휑): if 휓 U 휓 ∈ 훼 then

there exists 푗 ≥ 푖 such that 휓 ∈ 훼
• We have: every satisfaction sequence is a Hintikka

sequence.

Hintikka sequences: An example

• Let 휑 = ¬ 푝 ∧ 푞 U (푟 ∧ 푠) . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. 푝, ¬푞, 푟, 푠,휑

2. ¬푝, 푟, ¬휑

3. ¬푝, 푞, ¬푟, 푟 ∧ 푠, ¬휑

4. {푝, 푞, 푝 ∧ 푞, 푟, 푠, 푟 ∧ 푠, ¬휑}

5. 푝, ¬푞, ¬ 푝 ∧ 푞 , ¬푟, 푠, ¬ 푟 ∧ 푠 ,휑

6. 푝, 푞, 푝 ∧ 푞 , 푟, 푠, (푟 ∧ 푠,) 휑

Hintikka sequences: An example

• Let 휑 = ¬ 푝 ∧ 푞 U (푟 ∧ 푠) . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. 푝, ¬푞, 푟, 푠,휑

2. ¬푝, 푟, ¬휑

3. ¬푝, 푞, ¬푟, 푟 ∧ 푠, ¬휑

4. {푝, 푞, 푝 ∧ 푞, 푟, 푠, 푟 ∧ 푠, ¬휑}

5. 푝, ¬푞, ¬ 푝 ∧ 푞 , ¬푟, 푠, ¬ 푟 ∧ 푠 ,휑

6. 푝, 푞, 푝 ∧ 푞 , 푟, 푠, (푟 ∧ 푠,) 휑

Hintikka sequences: An example

• Let 휑 = ¬ 푝 ∧ 푞 U (푟 ∧ 푠) . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. 푝, ¬푞, 푟, 푠,휑

2. ¬푝, 푟, ¬휑

3. ¬푝, 푞, ¬푟, 푟 ∧ 푠, ¬휑

4. {푝, 푞, 푝 ∧ 푞, 푟, 푠, 푟 ∧ 푠, ¬휑}

5. 푝, ¬푞, ¬ 푝 ∧ 푞 , ¬푟, 푠, ¬ 푟 ∧ 푠 ,휑

6. 푝, 푞, 푝 ∧ 푞 , 푟, 푠, (푟 ∧ 푠,) 휑

Hintikka sequences: An example

• Let 휑 = ¬ 푝 ∧ 푞 U (푟 ∧ 푠) . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. 푝, ¬푞, 푟, 푠,휑

2. ¬푝, 푟, ¬휑

3. ¬푝, 푞, ¬푟, (푟 ∧ 푠), ¬휑

4. {푝, 푞, 푝 ∧ 푞, 푟, 푠, 푟 ∧ 푠, ¬휑}

5. 푝, ¬푞, ¬ 푝 ∧ 푞 , ¬푟, 푠, ¬ 푟 ∧ 푠 ,휑

6. 푝, 푞, 푝 ∧ 푞 , 푟, 푠, (푟 ∧ 푠,) 휑

Hintikka sequences: An example

• Let 휑 = ¬ 푝 ∧ 푞 U (푟 ∧ 푠) . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. 푝, ¬푞, 푟, 푠,휑

2. ¬푝, 푟, ¬휑

3. ¬푝, 푞, ¬푟, (푟 ∧ 푠), ¬휑

4. {푝, 푞, (푝 ∧ 푞), 푟, 푠, (푟 ∧ 푠), ¬휑}

5. 푝, ¬푞, ¬ 푝 ∧ 푞 , ¬푟, 푠, ¬ 푟 ∧ 푠 ,휑

6. 푝, 푞, 푝 ∧ 푞 , 푟, 푠, (푟 ∧ 푠,) 휑

Hintikka sequences: An example

• Let 휑 = ¬ 푝 ∧ 푞 U (푟 ∧ 푠) . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. 푝, ¬푞, 푟, 푠,휑

2. ¬푝, 푟, ¬휑

3. ¬푝, 푞, ¬푟, (푟 ∧ 푠), ¬휑

4. {푝, 푞, (푝 ∧ 푞), 푟, 푠, (푟 ∧ 푠), ¬휑}

5. 푝, ¬푞, ¬ 푝 ∧ 푞 , ¬푟, 푠, ¬ 푟 ∧ 푠 ,휑

6. 푝, 푞, 푝 ∧ 푞 , 푟, 푠, (푟 ∧ 푠,) 휑

Hintikka sequences: An example

• Let 휑 = ¬ 푝 ∧ 푞 U (푟 ∧ 푠) . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. 푝, ¬푞, 푟, 푠,휑

2. ¬푝, 푟, ¬휑

3. ¬푝, 푞, ¬푟, (푟 ∧ 푠), ¬휑

4. 푝, 푞, 푝 ∧ 푞 , 푟, 푠, 푟 ∧ 푠 , ¬휑

5. 푝, ¬푞, ¬ 푝 ∧ 푞 , ¬푟, 푠, ¬ 푟 ∧ 푠 ,휑

6. 푝, 푞, 푝 ∧ 푞 , 푟, 푠, 푟 ∧ 푠 ,휑

Main theorem

• Definition: A Hintikka sequence 훼 훼 훼 … extends a
computation 푠 푠 푠 … if 푠 ∩ 푐푙 휑 = 훼 ∩ 퐴푃 for every
푖 ≥ 0.

• Theorem: Every computation 푠 푠 푠 … can be extended
to a unique Hintikka sequence, and this extension is the
satisfaction sequence.

Strategy for the NGA of a formula

• Let 휎 be a computation over 퐴푃.
• We have: 휎 ⊨ 휑

iff 휑 belongs to the first set of the
satisfaction sequence for 휎

iff 휑 belongs to the first set of the
Hintikka sequence for 휎

• Strategy: design the NGA so that for every 휎
– The runs on 휎 correspond to the pre-Hintikka sequences

훼 훼 훼 … such that 휑 ∈ 훼
– A run is accepting iff its corresponding pre-Hintikka

sequence is also a Hintikka sequence.

Strategy for the NGA of a formula

• Let 휎 be a computation over 퐴푃.
• We have: 휎 ⊨ 휑

iff 휑 belongs to the first set of the
satisfaction sequence for 휎

iff 휑 belongs to the first set of the
Hintikka sequence for 휎

• Strategy: design the NGA so that for every 휎
– The runs on 휎 correspond to the pre-Hintikka sequences

훼 훼 훼 … such that 휑 ∈ 훼
– A run is accepting iff its corresponding pre-Hintikka

sequence is also a Hintikka sequence.

Strategy for the NGA of a formula

• Let 휎 be a computation over 퐴푃.
• We have: 휎 ⊨ 휑

iff 휑 belongs to the first set of the
satisfaction sequence for 휎

iff 휑 belongs to the first set of the
Hintikka sequence for 휎

• Strategy: design the NGA so that for every 휎
– The runs on 휎 correspond to the pre-Hintikka sequences

훼 훼 훼 … that extend 휎 and satisfy 휑 ∈ 훼
– A run is accepting iff its corresponding pre-Hintikka

sequence is also a Hintikka sequence.

The NGA 퐴

• Alphabet: 2
• States: atoms of 휑.
• Initial states: atoms containing 휑.

• Transitions: triples 훼→훽 such that 훼 ∩ {푝, ¬푝 ∣ 푝 ∈
퐴푃} = 푠 and 훼,훽 satisfies the conditions of a pre-
Hintikka sequence.

• Sets of accepting states: A set 퐹 for every
until-subformula휓 푈휓 of 휑.
퐹 contains the atoms 훼 such that 휓 푈휓 ∉ 훼
or 휓 ∈ 훼.

The NGA 퐴

• Alphabet: 2
• States: atoms of 휑.
• Initial states: atoms containing 휑.

• Transitions: triples 훼→훽 such that 훼 ∩ {푝, ¬푝 ∣ 푝 ∈
퐴푃} = 푠 and 훼,훽 satisfies the conditions of a pre-
Hintikka sequence.

• Sets of accepting states: A set 퐹 for every
until-subformula휓 푈휓 of 휑.
퐹 contains the atoms 훼 such that 휓 푈휓 ∉ 훼
or 휓 ∈ 훼.

The NGA 퐴

• Alphabet: 2
• States: atoms of 휑.
• Initial states: atoms containing 휑.

• Transitions: triples 훼→훽 such that 훼 ∩ {푝, ¬푝 ∣ 푝 ∈
퐴푃} = 푠 and 훼,훽 satisfies the conditions of a pre-
Hintikka sequence.

• Sets of accepting states: A set 퐹 for every
until-subformula휓 푈휓 of 휑.
퐹 contains the atoms 훼 such that 휓 푈휓 ∉ 훼
or 휓 ∈ 훼.

The NGA 퐴

• Alphabet: 2
• States: atoms of 휑.
• Initial states: atoms containing 휑.

• Transitions: triples 훼→훽 such that 훼 ∩ {푝, ¬푝 ∣ 푝 ∈
퐴푃} = 푠 and 훼,훽 satisfies the conditions of a pre-
Hintikka sequence.

• Sets of accepting states: A set 퐹 for every
until-subformula휓 푈휓 of 휑.
퐹 contains the atoms 훼 such that 휓 푈휓 ∉ 훼
or 휓 ∈ 훼.

The NGA 퐴

• Alphabet: 2
• States: atoms of 휑.
• Initial states: atoms containing 휑.

• Transitions: triples 훼→훽 such that 훼 ∩ 퐴푃 = 푠 and
훼 훽 satisfies the conditions of a pre-Hintikka
sequence.

• Sets of accepting states: A set 퐹 for every
until-subformula휓 푈휓 of 휑.
퐹 contains the atoms 훼 such that 휓 푈휓 ∉ 훼
or 휓 ∈ 훼.

The NGA 퐴

• Alphabet: 2
• States: atoms of 휑.
• Initial states: atoms containing 휑.
• Transitions: triples 훼→훽 such that 훼 ∩ 퐴푃 = 푠 and
훼 훽 satisfies the conditions of a pre-Hintikka
sequence.

• Sets of accepting states: A set 퐹 for every
until-subformula휓 U휓 of 휑.
퐹 contains the atoms 훼 such that 휓 U휓 ∉ 훼
or 휓 ∈ 훼.

Example: The NGA 퐴

(Labels of transitions omitted. The label of a transition from
atom 훼 is the set {푝 ∈ 퐴푃 ∣ 푝 ∈ 훼}. There is only one set of
accepting states.)

Some observations

• All transitions leaving a state carry the same label.
• For every computation 푠 푠 푠 … satisfying휑 there is a

unique accepting run 훼 →훼 →훼 →⋯, namely the
one such that 훼 훼 훼 … is the satisfaction sequence for
푠 푠 푠 … .

• The sets of computations accepted from each initial
state are pairwise disjoint.

• The number of states is bounded by 2 .

