Verification with ω-automata

Programs and ω-executions

- Recall: a full execution of a program is an execution that cannot be extended (either infinite or ending at a configuration without successors).
- We consider programs that may have ω-executions.
- We assume w.l.o.g. that every full execution of the program is infinite (see next slide).
- Therefore: full executions $=\omega$-executions

Handling finite full executions

```
while }x=1\mathrm{ do
    if }y=1\mathrm{ then
        x\leftarrow0
```

We artificially ensure that every full execution is infinite by adding a selfloop to every state without successors.

Verifying a program

- Goal: automatically check if some ω-execution violates a property.
- Safety property: "nothing bad happens"
- No configuration satisfies $x=1$.
- No configuration is a deadlock.
- Along an execution the value of x cannot decrease.
- Liveness property: "something good eventually happens"
- Eventually x has value 1 .
- Every message sent during the execution is eventually received.

Safety and liveness: more precisely

- A finite execution w is bad for a given property if every potential ω-execution of the form $w w^{\prime}$ violates the property.
- A property is a safety property if every ω-execution that violates the property has a bad prefix. (Intuitively: after finite time we can already say that the property does not hold)
- A property is a liveness property if some ω-execution that violates the property has no bad prefix. (We can only tell that the property is a violation "after seeing the complete ω-execution".)

Approach to automatic verification

- Represent the set of ω-executions of the program as a NBA. (The system NBA).
- Represent the set of possible ω-executions that violate the property as a NBA (or an ω-regular expression). (The property NBA).
- Check emptiness of the intersection of the two NBAs.

Problem: Fairness

- We may want to exclude some ω-executions because they are "unfair".
- Example: finite waiting property in Lamport's mutex algorithm.

Lamport's algorithm

Asynchronous product

Finite waiting property

- Finite waiting: If a process is trying to access the critical section, it eventually will.
- Formalization: Let $N C_{i}, T_{i}, C_{i}$ be atomic propositions mapped to the sets of configurations where process i is in the non-critical section, trying to access it, and in the critical section, respectively. The full executions that violate finite waiting for process i are

$$
\Sigma^{*} T_{i}\left(\Sigma \backslash C_{i}\right)^{\omega}
$$

- Observe: all states of the system NBA are final, and so we can intersect NBAs using the algorithm for NFAs

Finite waiting property

- The finite waiting property does not hold because of

$$
\left[0,0, n c_{0}, n c_{1}\right]\left[1,0, t_{0}, n c_{1}\right]\left[1,1, t_{0}, t_{1}\right]^{\omega}
$$

- Is this a real problem of the algorithm? No! We have not specified correctly.
- Fairness assumption: both processes execute infinitely many actions.
(Usually a weaker assumption is used: if a process can execute actions infinitely often, it executes infinitely many actions.)
- Reformulation: in every fair ω-execution, if a process is trying to access the critical section, it will eventually access it.

Finite waiting property

- The violations of the property under fairness are the intersection of $\Sigma^{*} T_{i}\left(\Sigma \backslash C_{i}\right)^{\omega}$ and the ω-executions in which both processes make a move infinitely often.
- Problem: how do we represent this condition as an ω-regular language?
- Solution: enrich the alphabet of the NBA Letter: pair (c, i) where c is a configuration and i is the index of the process making the move.

Finite waiting property

- Denote by M_{0} and M_{1} the set of letters with index 0 and 1, respectively.
- The possible ω-executions where both processes move infinitely often is given by

$$
\left(\left(M_{0}+M_{1}\right)^{*} M_{0} M_{1}\right)^{\omega}
$$

- Finite waiting holds under fairness for process 0 but not for process 1 because of

$$
\begin{gathered}
{\left[0,0, n c_{0}, n c_{1}\right]\left[0,1, n c_{0}, t_{1}\right]\left[1,1, t_{0}, t_{1}\right]\left[1,1, t_{0}, q_{1}\right]} \\
\left.\left[1,0, t_{0}, q_{1}^{\prime}\right]\left[1,0, c_{0}, q_{1}^{\prime}\right]\left[0,0, n c_{0}, q_{1}^{\prime}\right]\right)^{\omega}
\end{gathered}
$$

Temporal logic

- Writing property NBAs requires training in automata theory
- We search for a more intuitive (but still formal) description language: Temporal Logic.
- Temporal logic extends propositional logic with temporal operators like always and eventually.
- Linear Temporal Logic (LTL) is a temporal logic interpreted over linear structures.

Linear Temporal Logic (LTL)

- We are given:
- A set AP of atomic propositions (names for basic properties)
- A valuation assigning to each atomic proposition a set of configurations (intended meaning: the set of configurations that satisfy the property).

Example

1	while $x=1$ do
2	if $y=1$ then
3	$x \leftarrow 0$
4	$y \leftarrow 1-x$
5	end

- $A P: \mathrm{at}_{1}, \mathrm{at}_{2}, \ldots, \mathrm{at}_{5}, \mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1$
- $V\left(\mathrm{at}_{\mathrm{i}}\right)=\{[\ell, x, y] \in C \mid \ell=i\}$ for every $i \in\{1, \ldots, 5\}$
- $V(\mathrm{x}=0)=\{[\ell, x, y] \in C \mid \mathrm{x}=0\}$

Computations

- A computation is an infinite sequence of subsets of $A P$.
- Examples for $A P=\{p, q\}$

$$
\phi^{\omega} \quad(\{p\}\{p, q\})^{\omega} \quad\{p\}\{p, q\} \varnothing \varnothing\{p\}^{\omega}
$$

- We map every possible execution to a computation by mapping each configuration to the set of atomic propositions it satisfies.
- A computation is executable if some ω-execution maps to it.

Example

$$
\begin{aligned}
& e_{1}=[1,0,0][5,0,0]^{\omega} \\
& e_{2}=([1,1,0][2,1,0][4,1,0])^{\omega}
\end{aligned}
$$

ω-executions:

$$
\begin{aligned}
& e_{3}=[1,0,1][5,0,1]^{\omega} \\
& e_{4}=[1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]^{\omega}
\end{aligned}
$$

From executions to computations

$$
\begin{aligned}
& e_{1}=[1,0,0][5,0,0]^{\omega} \\
& e_{2}=([1,1,0][2,1,0][4,1,0])^{\omega} \\
& \sigma_{1}=\{a t 1, x=0, y=0\}\{a t 5, x=0, y=0\}^{\omega} \\
& \sigma_{2}=(\{a t 1, x=0, y=0\}\{a t 2, x=1, y=0\}\{a t 4, x=1, y=0\})^{\omega}
\end{aligned}
$$

Syntax of LTL

- Given: set $A P$ of atomic propositions, valuation assigning to each atomic proposition a set configurations.
- The formulas of LTL are given by the syntax:

$$
\varphi::=\operatorname{true}|p| \neg \varphi_{1}\left|\varphi_{1} \wedge \varphi_{2}\right| \mathrm{X} \varphi_{1} \mid \varphi_{1} \mathrm{U} \varphi_{2}
$$

where $p \in A P$

Semantics of LTL

- Formulas are interpreted on computations (executable or not).
- The satisfaction relation $\sigma \vDash \varphi$ is given by:

$$
\begin{aligned}
& \sigma \vDash \text { true } \\
& \sigma \vDash p \text { iff } p \in \sigma(0) \\
& \sigma \vDash \neg \varphi \text { iff } \operatorname{not} \sigma \vDash \varphi \\
& \sigma \vDash \varphi_{1} \wedge \varphi_{2} \text { iff } \sigma \vDash \varphi_{1} \text { and } \sigma \vDash \varphi_{2} \\
& \sigma \vDash \mathrm{X} \varphi \text { iff } \sigma^{1} \vDash \varphi \\
& \sigma \vDash \varphi_{1} \mathrm{U} \varphi_{2} \text { iff there is } k \geq 0 \text { s.t.: } \sigma^{k} \vDash \varphi_{2} \text { and } \\
& \quad \sigma^{i} \vDash \varphi_{1} \text { for all } 0 \leq i<k
\end{aligned}
$$

Abbreviations

- The boolean abbreviations false, $\vee, \rightarrow, \leftrightarrow$ etc. are defined as usual.
- $\mathrm{F} \varphi:=\operatorname{true} \mathrm{U} \varphi$ (eventually φ).

According to the semantics:

$$
\sigma \vDash \mathrm{F} \varphi \text { iff there is } k \geq 0 \text { s.t. } \sigma^{k} \vDash \varphi
$$

- $\mathrm{G} \varphi:=\neg \mathrm{F} \neg \varphi$ (always φ or globally φ). According to the semantics:
$\sigma \vDash \mathrm{G} \varphi$ iff $\sigma^{k} \vDash \varphi$ for every $k \geq 0$

Getting used to LTL

- Express in natural language $\mathrm{FG} p, \mathrm{GF} p$
- Are these pairs of formulas equivalent?
$\begin{array}{ll}\mathrm{FF} p & \mathrm{~F} p \\ \mathrm{FG} p & \mathrm{GF} p \\ p \mathrm{U} q & p \mathrm{U}(p \wedge q)\end{array}$
Fp $\quad p \vee \mathrm{XF} p$
$\mathrm{G} p \quad p \vee \mathrm{XG} p$
$p \mathrm{U} q \quad p \vee \mathrm{X}(p \mathrm{U} q)$
$p \mathrm{U} q \quad q \vee \mathrm{X}(p \mathrm{U} q)$
$p \mathrm{U} q \quad q \vee(p \wedge \mathrm{X}(p \mathrm{U} q)$

GGp Gp
FGFp GFp

Fp $p \wedge \mathrm{XF} p$
$\mathrm{G} p \quad p \wedge \mathrm{XG} p$
$p \cup q \quad p \wedge \mathrm{X}(p \mathrm{U} q)$
$p \mathrm{U} q q \wedge \mathrm{X}(p \mathrm{U} q)$
$p \mathrm{U} q q \wedge(p \vee \mathrm{X}(p \mathrm{U} q)$

Expressing properties of a program

- $A P: \mathrm{at}_{1}, \mathrm{at}_{2}, \ldots, \mathrm{at}_{5}, \mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1$

$$
\begin{aligned}
& V\left(\mathrm{at}_{\mathrm{i}}\right)=\{[\ell, x, y] \in C \mid \ell=i\} \text { for every } i \in\{1, \ldots, 5\} \\
& V(\mathrm{x}=0)=\{[\ell, x, y] \in C \mid \mathrm{x}=0\}
\end{aligned}
$$

- $\varphi_{0}=x=1 \wedge X y=1 \wedge X X a t 3$
- $\varphi_{1}=\mathrm{F} x=0$
- $\varphi_{2}=\mathrm{X}=0$ U at 5
- $\varphi_{3}=y=1 \wedge F(x=0 \wedge$ at5 $) \wedge \neg(F(y=0 \wedge X y=1))$

Expressing properties of Lamport's algorithm

- $A P=\left\{N C_{0}, T_{0}, C_{0}, N C_{1}, T_{1}, C_{1}, M_{0}, M_{1}\right\}$

Valuation as expected.

- M utual exclusion: $\mathrm{G}\left(\neg C_{0} \vee \neg C_{1}\right)$
- Finite waiting: $\mathrm{G}\left(T_{0} \rightarrow \mathrm{~F} C_{0}\right) \wedge \mathrm{G}\left(T_{1} \rightarrow \mathrm{~F} C_{1}\right)$
- Fair finite waiting:
$\left(\mathrm{GF} M_{0} \wedge \mathrm{GF} M_{1}\right) \rightarrow\left(\mathrm{G}\left(T_{0} \rightarrow \mathrm{~F} C_{0}\right) \wedge \mathrm{G}\left(T_{1} \rightarrow \mathrm{~F} C_{1}\right)\right)$

Expressing properties of Lamport's algorithm

- Bounded overtaking:

$$
\mathrm{G}\left(T_{0} \rightarrow\left(\neg C_{1} \mathrm{U}\left(C_{1} \mathrm{U}\left(\neg C_{1} \mathrm{U} C_{0}\right)\right)\right)\right)
$$

Whenever T_{0} holds, the computation continues with
a (possibly empty) interval at which $\neg C_{1}$ holds,
followed by
a (possibly empty) interval at which C_{1} holds, followed by
a point at which C_{0} holds.

From formulas to NBAs

- Given: set AP of atomic propositions
- Language $L(\varphi)$ of a formula φ : set of computations satisfying φ.
- Examples for $A P=\{p, q\}$
$-L(\mathrm{Fp})=$ computations $s_{1} s_{2} s_{3} \ldots$ such that $p \in s_{i}$ for some $i \geq 1$
$-L(\mathrm{G}(p \wedge q))=\left\{\{p, q\}^{\omega}\right\}$
- $L(\varphi)$ is an ω-language over the alphabet $2^{A P}$
- For $A P=\{p, q\}$ we get $2^{A P}=\{\varnothing,\{p\},\{q\},\{p, q\}\}$

NBAs for some formulas

$$
A P=\{p, q\}
$$

- Fp
- Gp
- $p \mathrm{U} q$
- GFp

From LTL formulas to NGAs

We present an algorithm that takes a formula φ over a fixed set $A P$ of atomic propositions as input and returns a NGA A_{φ} such that $L\left(A_{\varphi}\right)=L(\varphi)$.

Closure of a formula

- Define $\operatorname{neg}(\varphi)=\left\{\begin{array}{c}\psi \text { if } \varphi=\neg \psi \\ \neg \varphi \text { otherwise }\end{array}\right.$
- The closure $c l(\varphi)$ of φ is the set containing ψ and neg (ψ) for every subformula ψ of φ
- Example:

$$
c l(p \mathrm{U} \neg q)=\{p, \neg p, \neg q, q, p \mathrm{U} \neg q, \neg(p \mathrm{U} \neg q)\}
$$

Satisfaction sequence

- The satisfaction sequence of a computation $s_{0} s_{1} s_{2} \ldots$ with respect to φ is the sequence $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ where α_{i} contains the formulas of $c l(\varphi)$ satisfied by $s_{i} s_{i+1} s_{i+2} \ldots$

Satisfaction sequence

- The satisfaction sequence of a computation $s_{0} s_{1} s_{2} \ldots$ with respect to φ is the sequence $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ where α_{i} contains the formulas of $c l(\varphi)$ satisfied by $s_{i} s_{i+1} s_{i+2} \ldots$
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. $p \mathrm{U} q$ is:

Satisfaction sequence

- The satisfaction sequence of a computation $s_{0} s_{1} s_{2} \ldots$ with respect to φ is the sequence $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ where α_{i} contains the formulas of $c l(\varphi)$ satisfied by $s_{i} s_{i+1} s_{i+2} \ldots$
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. $p \mathrm{U} q$ is:

$$
\{p, \neg q, \neg(p \mathrm{U} q)\}^{\omega}
$$

Satisfaction sequence

- The satisfaction sequence of a computation $s_{0} s_{1} s_{2} \ldots$ with respect to φ is the sequence $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ where α_{i} contains the formulas of $c l(\varphi)$ satisfied by $s_{i} s_{i+1} s_{i+2} \ldots$
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. $p \mathrm{U} q$ is:

$$
\{p, \neg q, \neg(p \mathrm{U} q)\}^{\omega}
$$

- The satisfaction sequence of $(\{p\}\{q\})^{\omega}$ w.r.t. $p \mathrm{Uq}$ is:

Satisfaction sequence

- The satisfaction sequence of a computation $s_{0} s_{1} s_{2} \ldots$ with respect to φ is the sequence $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ where α_{i} contains the formulas of $\operatorname{cl}(\varphi)$ satisfied by $s_{i} s_{i+1} s_{i+2} \ldots$
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. $p \mathrm{U} q$ is:

$$
\{p, \neg q, \neg(p \cup q)\}^{\omega}
$$

- The satisfaction sequence of $(\{p\}\{q\})^{\omega}$ w.r.t. $p \mathrm{U} q$ is:

$$
(\{p, \neg q, p \cup q\}\{\neg p, q, p \cup q\})^{\omega}
$$

- Goal for the next slides: give a syntactic characterization of the satisfaction sequence

Atoms

- Intuition: an atom is a "maximal set of formulas of $c l(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \wedge "

Atoms

- Intuition: an atom is a "maximal set of formulas of $c l(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \wedge "
- A set $\alpha \subseteq c l(\varphi)$ is an atom if it satisfies the following two conditions:
- For every $\psi \in \operatorname{cl}(\varphi)$, exactly one of ψ and neg (ψ) belong to α
- For every $\psi_{1} \wedge \psi_{2} \in \operatorname{cl}(\varphi), \psi_{1} \wedge \psi_{2} \in \alpha$ iff $\psi_{1} \in \alpha$ and $\psi_{2} \in \alpha$

Atoms

- Intuition: an atom is a "maximal set of formulas of $c l(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \wedge "
- A set $\alpha \subseteq c l(\varphi)$ is an atom if it satisfies the following two conditions:
- For every $\psi \in \operatorname{cl}(\varphi)$, exactly one of ψ and neg (ψ) belong to α
- For every $\psi_{1} \wedge \psi_{2} \in \operatorname{cl}(\varphi), \psi_{1} \wedge \psi_{2} \in \alpha$ iff $\psi_{1} \in \alpha$ and $\psi_{2} \in \alpha$
- Examples of atoms for $\varphi=\neg(p \wedge q)$ U Fp :

$$
\{\neg p, \neg q, \neg(p \wedge q), \mathrm{F} p, \varphi\} \quad\{p, q,(p \wedge q), \neg \mathrm{F} p, \neg \varphi\}
$$

Atoms

- Intuition: an atom is a "maximal set of formulas of $c l(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \wedge "
- A set $\alpha \subseteq c l(\varphi)$ is an atom if it satisfies the following two conditions:
- For every $\psi \in \operatorname{cl}(\varphi)$, exactly one of ψ and neg (ψ) belong to α
- For every $\psi_{1} \wedge \psi_{2} \in \operatorname{cl}(\varphi), \psi_{1} \wedge \psi_{2} \in \alpha$ iff $\psi_{1} \in \alpha$ and $\psi_{2} \in \alpha$
- Examples of atoms for $\varphi=\neg(p \wedge q)$ U Fp :

$$
\{\neg p, \neg q, \neg(p \wedge q), \mathrm{F} p, \varphi\} \quad\{p, q,(p \wedge q), \neg \mathrm{F} p, \neg \varphi\}
$$

- Examples of non-atoms for $\varphi=\neg(p \wedge q) \mathrm{UFp}$:

Atoms

- Intuition: an atom is a "maximal set of formulas of $c l(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \wedge "
- A set $\alpha \subseteq c l(\varphi)$ is an atom if it satisfies the following two conditions:
- For every $\psi \in \operatorname{cl}(\varphi)$, exactly one of ψ and neg (ψ) belong to α
- For every $\psi_{1} \wedge \psi_{2} \in \operatorname{cl}(\varphi), \psi_{1} \wedge \psi_{2} \in \alpha$ iff $\psi_{1} \in \alpha$ and $\psi_{2} \in \alpha$
- Examples of atoms for $\varphi=\neg(p \wedge q)$ U Fp :

$$
\{\neg p, \neg q, \neg(p \wedge q), \mathrm{F} p, \varphi\} \quad\{p, q,(p \wedge q), \neg \mathrm{F} p, \neg \varphi\}
$$

- Examples of non-atoms for $\varphi=\neg(p \wedge q) \mathrm{UFp}$:

$$
\{p, q, p \wedge q, \mathrm{~F} p\}\{\neg p, q, p \wedge q, \mathrm{~F} p, \varphi\}
$$

Atoms

- Intuition: an atom is a "maximal set of formulas of $c l(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \wedge "
- A set $\alpha \subseteq c l(\varphi)$ is an atom if it satisfies the following two conditions:
- For every $\psi \in \operatorname{cl}(\varphi)$, exactly one of ψ and neg (ψ) belong to α
- For every $\psi_{1} \wedge \psi_{2} \in \operatorname{cl}(\varphi), \psi_{1} \wedge \psi_{2} \in \alpha$ iff $\psi_{1} \in \alpha$ and $\psi_{2} \in \alpha$
- Examples of atoms for $\varphi=\neg(p \wedge q)$ UFp:

$$
\{\neg p, \neg q, \neg(p \wedge q), \mathrm{F} p, \varphi\} \quad\{p, q,(p \wedge q), \neg \mathrm{F} p, \neg \varphi\}
$$

- Examples of non-atoms for $\varphi=\neg(p \wedge q) \mathrm{UFp}$:

$$
\{p, q, p \wedge q, \mathrm{~F} p\} \quad\{\neg p, q, p \wedge q, \mathrm{~F} p, \varphi\}
$$

- We have: all elements of a satisfaction sequence are atoms

Pre-Hintikka sequences

- A pre-Hinttika sequence for φ is a sequence $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ of atoms satisfying the following conditions for every $i \geq 0$:
- For every $\mathrm{X} \psi \in \operatorname{cl}(\varphi)$:
$\mathrm{X} \psi \in \alpha_{i}$ iff $\psi \in \alpha_{i+1}$
- For every $\psi_{1} \mathrm{U} \psi_{2} \in \operatorname{cl}(\varphi)$:
$\psi_{1} \mathrm{U} \psi_{2} \in \alpha_{i}$ iff $\psi_{2} \in \alpha_{i}$ or $\psi_{1} \in \alpha_{i}$ and $\psi_{1} \mathrm{U} \psi_{2} \in \alpha_{i+1}$

Pre-Hintikka sequences

- A pre-Hinttika sequence for φ is a sequence $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ of atoms satisfying the following conditions for every $i \geq 0$:
- For every $\mathrm{X} \psi \in \operatorname{cl}(\varphi)$:
$\mathrm{X} \psi \in \alpha_{i}$ iff $\psi \in \alpha_{i+1}$
- For every $\psi_{1} \mathrm{U} \psi_{2} \in \operatorname{cl}(\varphi)$:
$\psi_{1} \mathrm{U} \psi_{2} \in \alpha_{i}$ iff $\psi_{2} \in \alpha_{i}$ or $\psi_{1} \in \alpha_{i}$ and $\psi_{1} \mathrm{U} \psi_{2} \in \alpha_{i+1}$
- We have: every satisfaction sequence is a pre-Hintikka sequence.

Hintikka sequences

- A pre-Hinttika sequence $\alpha_{0} \alpha_{1} \alpha_{2}$. . is a Hinttika sequence if it satisfies for every $i \geq 0$:
- For every $\psi_{1} \mathrm{U} \psi_{2} \in \operatorname{cl}(\varphi)$: if $\psi_{1} \mathrm{U} \psi_{2} \in \alpha_{i}$ then there exists $j \geq i$ such that $\psi_{2} \in \alpha_{j}$
- We have: every satisfaction sequence is a Hintikka sequence.

Hintikka sequences: An example

- Let $\varphi=\neg(p \wedge q) \mathrm{U}(r \wedge s)$. Which of the following are pre-Hintikka and Hintikka sequences ?

Hintikka sequences: An example

- Let $\varphi=\neg(p \wedge q) \mathrm{U}(r \wedge s)$. Which of the following are pre-Hintikka and Hintikka sequences ?

1. $\{p, \neg q, r, s, \varphi\}^{\omega}$

Hintikka sequences: An example

- Let $\varphi=\neg(p \wedge q) \mathrm{U}(r \wedge s)$. Which of the following are pre-Hintikka and Hintikka sequences ?

1. $\{p, \neg q, r, s, \varphi\}^{\omega}$
2. $\{\neg p, r, \neg \varphi\}^{\omega}$

Hintikka sequences: An example

- Let $\varphi=\neg(p \wedge q) \mathrm{U}(r \wedge s)$. Which of the following are pre-Hintikka and Hintikka sequences ?

1. $\{p, \neg q, r, s, \varphi\}^{\omega}$
2. $\{\neg p, r, \neg \varphi\}^{\omega}$
3. $\{\neg p, q, \neg r,(r \wedge s), \neg \varphi\}^{\omega}$

Hintikka sequences: An example

- Let $\varphi=\neg(p \wedge q) \mathrm{U}(r \wedge s)$. Which of the following are pre-Hintikka and Hintikka sequences ?

1. $\{p, \neg q, r, s, \varphi\}^{\omega}$
2. $\{\neg p, r, \neg \varphi\}^{\omega}$
3. $\{\neg p, q, \neg r,(r \wedge s), \neg \varphi\}^{\omega}$
4. $\quad\{p, q,(p \wedge q), r, s,(r \wedge s), \neg \varphi\}$

Hintikka sequences: An example

- Let $\varphi=\neg(p \wedge q) \mathrm{U}(r \wedge s)$. Which of the following are pre-Hintikka and Hintikka sequences ?

1. $\{p, \neg q, r, s, \varphi\}^{\omega}$
2. $\{\neg p, r, \neg \varphi\}^{\omega}$
3. $\{\neg p, q, \neg r,(r \wedge s), \neg \varphi\}^{\omega}$
4. $\{p, q,(p \wedge q), r, s,(r \wedge s), \neg \varphi\}$
5. $\{p, \neg q, \neg(p \wedge q), \neg r, s, \neg(r \wedge s), \varphi\}^{\omega}$

Hintikka sequences: An example

- Let $\varphi=\neg(p \wedge q) \mathrm{U}(r \wedge s)$. Which of the following are pre-Hintikka and Hintikka sequences?

1. $\{p, \neg q, r, s, \varphi\}^{\omega}$
2. $\{\neg p, r, \neg \varphi\}^{\omega}$
3. $\{\neg p, q, \neg r,(r \wedge s), \neg \varphi\}^{\omega}$
4. $\{p, q,(p \wedge q), r, s,(r \wedge s), \neg \varphi\}^{\omega}$
5. $\{p, \neg q, \neg(p \wedge q), \neg r, s, \neg(r \wedge s), \varphi\}^{\omega}$
6. $\{p, q,(p \wedge q), r, s,(r \wedge s), \varphi\}^{\omega}$

M ain theorem

- Definition: A Hintikka sequence $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ extends a computation $s_{0} s_{1} s_{2} \ldots$ if $s_{i} \cap c l(\varphi)=\alpha_{i} \cap A P$ for every $i \geq 0$.
- Theorem: Every computation $s_{0} s_{1} s_{2} \ldots$ can be extended to a unique Hintikka sequence, and this extension is the satisfaction sequence.

Strategy for the NGA of a formula

- Let σ be a computation over $A P$.

Strategy for the NGA of a formula

- Let σ be a computation over $A P$.
- We have:
$\sigma \vDash \varphi$
iff φ belongs to the first set of the satisfaction sequence for σ
iff φ belongs to the first set of the Hintikka sequence for σ

Strategy for the NGA of a formula

- Let σ be a computation over $A P$.
- We have:

$$
\sigma \vDash \varphi
$$

iff φ belongs to the first set of the satisfaction sequence for σ
iff φ belongs to the first set of the
Hintikka sequence for σ

- Strategy: design the NGA so that for every σ
- The runs on σ correspond to the pre-Hintikka sequences $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ that extend σ and satisfy $\varphi \in \alpha_{0}$
- A run is accepting iff its corresponding pre-Hintikka sequence is also a Hintikka sequence.

The NGA A_{φ}

The NGA A_{φ}

- Alphabet: $2^{A P}$

The NGA A_{φ}

- Alphabet: $2^{A P}$
- States: atoms of φ.

The NGA A_{φ}

- Alphabet: $2^{A P}$
- States: atoms of φ.
- Initial states: atoms containing φ.

The NGA A_{φ}

- Alphabet: $2^{A P}$
- States: atoms of φ.
- Initial states: atoms containing φ.
- Transitions: triples $\alpha \xrightarrow{s} \beta$ such that $\alpha \cap A P=s$ and $\alpha \beta$ satisfies the conditions of a pre-Hintikka sequence.

The NGA A_{φ}

- Alphabet: $2^{A P}$
- States: atoms of φ.
- Initial states: atoms containing φ.
- Transitions: triples $\alpha \xrightarrow{s} \beta$ such that $\alpha \cap A P=s$ and $\alpha \beta$ satisfies the conditions of a pre-Hintikka sequence.
- Sets of accepting states: A set $F_{\psi_{1} U \psi_{2}}$ for every until-subformula $\psi_{1} \mathrm{U} \psi_{2}$ of φ.
$F_{\psi_{1} U \psi_{2}}$ contains the atoms α such that $\psi_{1} \mathrm{U} \psi_{2} \notin \alpha$ or $\psi_{2} \in \alpha$.

Example: The NGA $A_{p \mathrm{U} q}$

(Labels of transitions omitted. The label of a transition from atom α is the set $\{p \in A P \mid p \in \alpha\}$. There is only one set of accepting states.)

Some observations

- All transitions leaving a state carry the same label.
- For every computation $s_{0} s_{1} s_{2}$. . satisfying φ there is a unique accepting run $\alpha_{0} \xrightarrow{S_{0}} \alpha_{1} \xrightarrow{s_{1}} \alpha_{2} \xrightarrow{s_{2}} \cdots$, namely the one such that $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ is the satisfaction sequence for $s_{0} s_{1} s_{2} \ldots$
- The sets of computations accepted from each initial state are pairwise disjoint.
- The number of states is bounded by $2^{|\varphi|}$.

