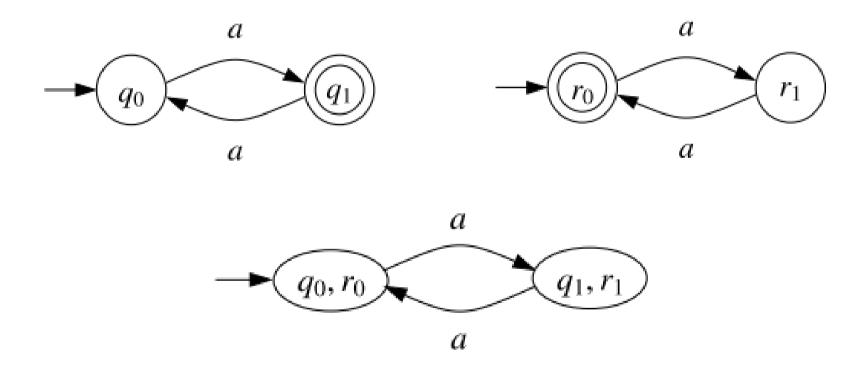
Implementing boolean operations for Büchi automata

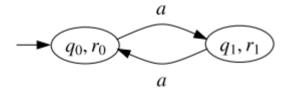
Intersection of NBAs

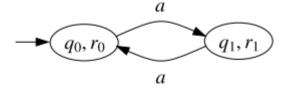
• The algorithm for NFAs does not work ...



Apply the same idea as in the conversion NGA→NBA

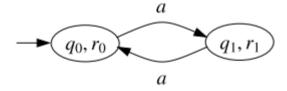
1. Take two copies of the pairing $[A_1, A_2]$.

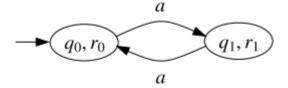




Apply the same idea as in the conversion NGA→NBA

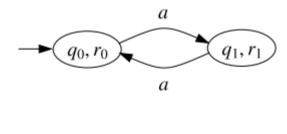
- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.

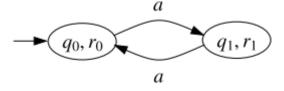




Apply the same idea as in the conversion NGA→NBA

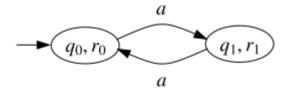
- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.
- 3. Redirect transitions of the second copy leaving F_2 to the first copy.

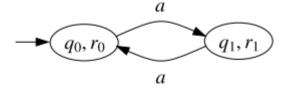




Apply the same idea as in the conversion NGA→NBA

- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.
- 3. Redirect transitions of the second copy leaving F_2 to the first copy.
- 4. Choose F as the set F_1 in the first copy.





$IntersNBA(A_1, A_2)$

```
Input: NBAs A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)
Output: NBA A_1 \cap_{\omega} A_2 = (Q, \Sigma, \delta, q_0, F) with L_{\omega}(A_1 \cap_{\omega} A_2) = L_{\omega}(A_1) \cap L_{\omega}(A_2)
```

```
1 O, \delta, F \leftarrow \emptyset
 2 q_0 \leftarrow [q_{01}, q_{02}, 1]
 3 W \leftarrow \{ [q_{01}, q_{02}, 1] \}
 4 while W \neq \emptyset do
         pick [q_1, q_2, i] from W
  5
        add [q_1, q_2, i] to Q'
         if q_1 \in F_1 and i = 1 then add [q_1, q_2, 1] to F'
 8
         for all a \in \Sigma do
             for all q_1' \in \delta_1(q_1, a), q_2' \in \delta(q_2, a) do
 9
                 if i = 1 and a_1 \notin F_1 then
10
                    add ([q_1,q_2,1],a,[q_1',q_2',1]) to \delta
11
                    if [q'_1, q'_2, 1] \notin Q' then add [q'_1, q'_2, 1] to W
12
                 if i = 1 and a_1 \in F_1 then
13
14
                    add ([q_1, q_2, 1], a, [q'_1, q'_2, 2]) to \delta
                    if [q'_1, q'_2, 2] \notin Q' then add [q'_1, q'_2, 2] to W
15
                 if i = 2 and a_2 \notin F_2 then
16
17
                    add ([q_1, q_2, 2], a, [q'_1, q'_2, 2]) to \delta
                    if [q'_1, q'_2, 2] \notin Q' then add [q'_1, q'_2, 2] to W
18
19
                 if i = 2 and q_2 \in F_2 then
                    add ([q_1, q_2, 2], a, [q'_1, q'_2, 1]) to \delta
20
                    if [q'_1, q'_2, 1] \notin Q' then add [q'_1, q'_2, 1] to W
21
      return (Q, \Sigma, \delta, q_0, F)
```

Special cases/improvements

- If all states of at least one of A_1 and A_2 are accepting, the algorithm for NFAs works.
- Intersection of NBAs A_1, A_2, \dots, A_k
 - Do NOT apply the algorithm for two NBAs (k-1) times.
 - Proceed instead as in the translation NGA \Rightarrow NBA: take k copies of $[A_1, A_2, ..., A_k]$ $(kn_1 ... n_k$ states instead of $2^k n_1 ... n_k$)

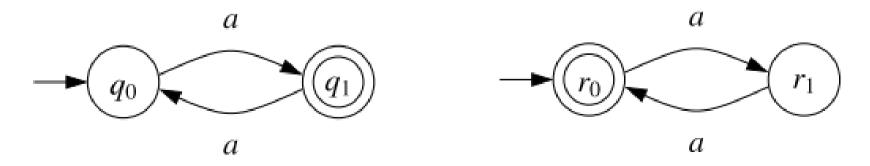
Complement

- Main result proved by Büchi: NBAs are closed under complement.
- Many later improvements in recent years.
- Construction radically different from the one for NFAs.

Problems

The powerset construction does not work.

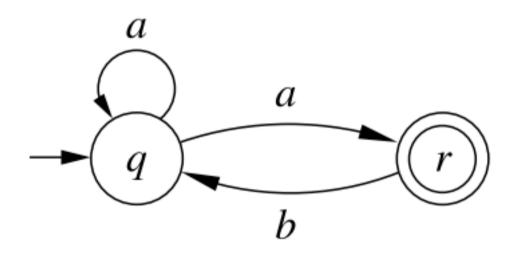
Exchanging final and non-final states in DBAs also fails.



- Extend the idea used to determinize co-Büchi automata with a new component.
- Recall: a NBA accepts a word w iff some path of dag(w) visits final states infinitely often.
- Goal: given NBA A, construct NBA \overline{A} such that:

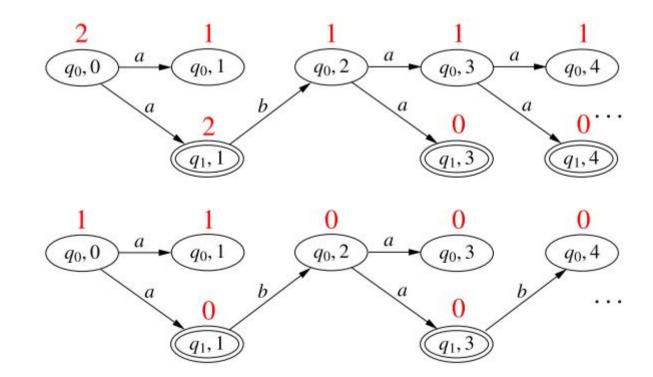
```
A rejects w iff no path of dag(w) visits accepting states of A i.o. iff some run of \bar{A} visits accepting states of \bar{A} i.o. iff \bar{A} accepts w
```

Running example

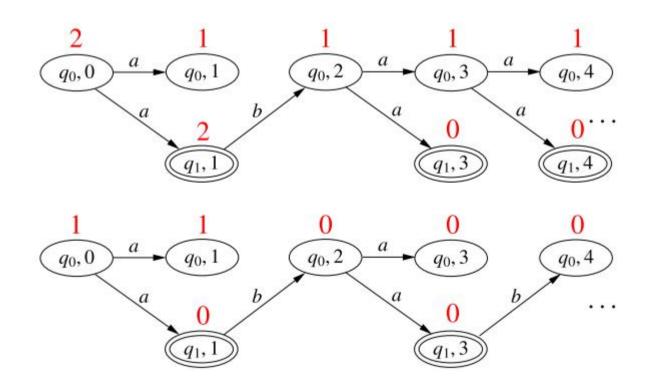


Rankings

- Mappings that associate to every node of dag(w) a rank (a natural number) such that
 - ranks never increase along a path, and
 - ranks of accepting nodes are even.



 A ranking is odd if every infinite path of dag(w) visits nodes of odd rank i.o.



Goal: given NBA A, construct NBA \overline{A} such that:

```
A rejects w
no path of dag(w) visits accepting states of A i.o.
             dag(w) has an odd ranking
  some run of \overline{A} visits accepting states of \overline{A} i.o.
                       \overline{A} accepts w
```

Prop

no path of dag(w) visits accepting states of A i.o. iff

dag(w) has an odd ranking

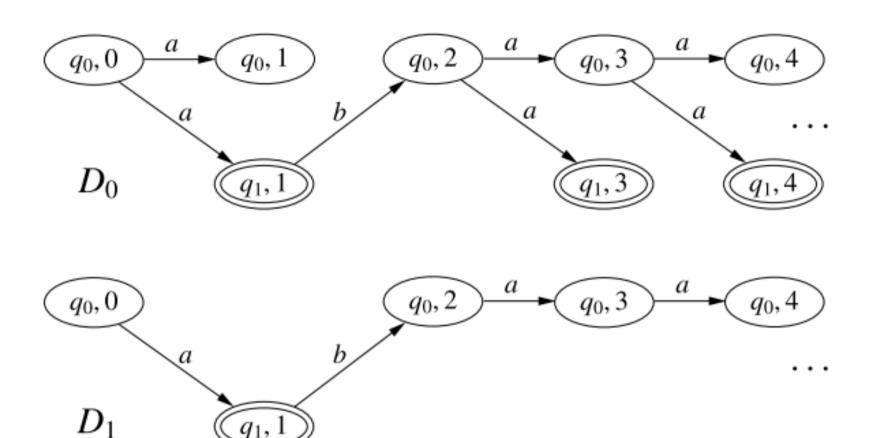
Further, all ranks of the odd ranking are in the range [0,2n], and all states of the first level rank have rank 2n.

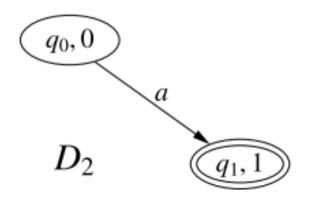
Proof:

(\Leftarrow): In an odd ranking of dag(w), ranks along infinite paths stabilize to odd values.

Therefore, since accepting nodes have even rank, no path of dag(w) visits accepting nodes i.o.

- (⇒): Assume no path of dag(w) visits accepting states of A i.o. Define an odd ranking of dag(w) as follows:
 - Construct a sequence $D_0 \supseteq D_1 \supseteq D_2 \cdots \supseteq D_{2n} \supseteq D_{2n+1}$ of dags, where
 - a) $D_0 = dag(w)$
 - b) D_{2i+1} is the result of removing from D_{2i} all nodes with finitely many descendants.
 - c) D_{2i+2} is the result of removing all nodes of D_{2i+1} with no accepting descendants (a node is a descendant of itself).
 - We define the rank of a node of dag(w) as the index of the unique dag D_j in the sequence such that the node belongs to D_j but not to D_{j+1} .

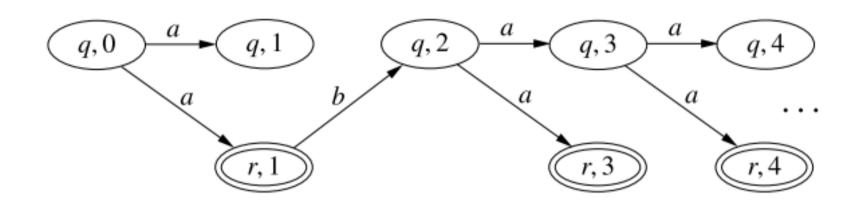




- Even step: remove all nodes having only finitely many successors.
- Odd step: remove nodes with no accepting descendants

- This definition of rank guarantees :
 - 1. Ranks along a path cannot increase.
 - 2. Accepting states get even ranks, because they can only be removed from dags with even index.
- It remains to prove:
 - every node gets a rank, i.e., $D_{2n+1} = \emptyset$.
- A round consists of two steps, an even step from D_{2i} to D_{2i+1} , and an odd step from D_{2i+1} to D_{2i+2} .

Each level of a dag has a width



- We define the width of a dag as the largest level width that appears infinitely often.
- Each round decreases the width of the dag by at least 1.
- Since the initial width is at most n, after at most n rounds the width is 0, and then a last step removes all nodes.

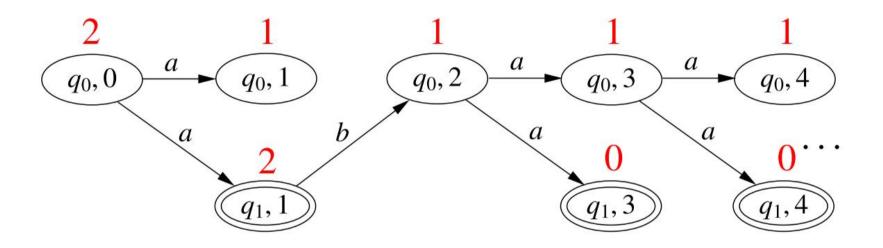
Goal:

dag(w) has an odd ranking
 iff

some run of \overline{A} visits accepting states of \overline{A} i.o.

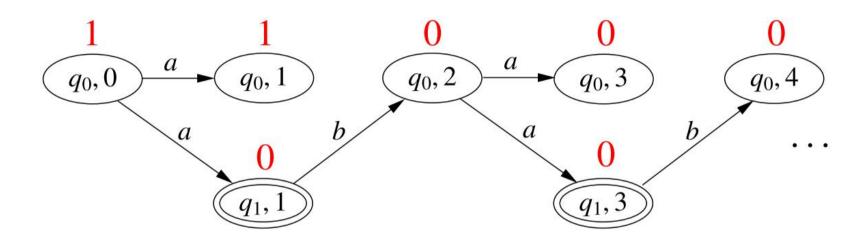
- Idea: design \overline{A} so that
 - its runs on w are the rankings of dag(w), and
 - its accepting runs on w are the odd rankings of dag(w).

Representing rankings



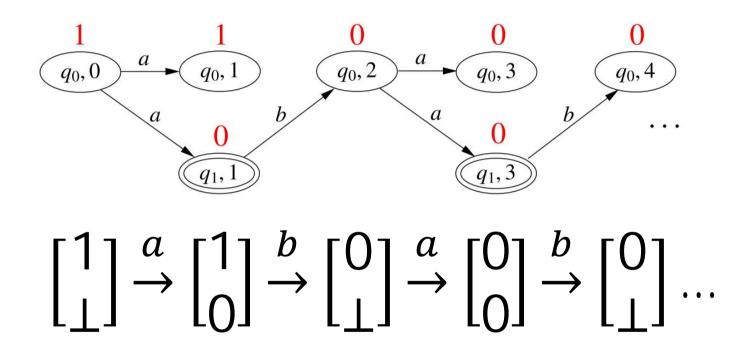
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \dots$$

Representing rankings



$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \stackrel{b}{\rightarrow} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{b}{\rightarrow} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \dots$$

Representing rankings



We can determine if $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \xrightarrow{l} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$ may appear in a ranking by just looking at n_1, n_2, n'_1, n'_2 and l: ranks should not increase.

First draft for A

- \bar{A} for or a two-state A (more states analogous):
 - States: all $n_1 \brack n_2$ where $0 \le n_1, n_2 \le 2n = 4$ and accepting states of A get even rank
 - Initial states: all states of the form $\begin{bmatrix} n_1 \\ \bot \end{bmatrix}$, \emptyset
 - Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} n_1' \\ n_2' \end{bmatrix}$ s.t . ranks do not increase
- The runs of the automaton on a word w correspond to all the rankings of dag(w).
- Observe: \overline{A} is a NBA even if A is a DBA, because there are many rankings for the same word.

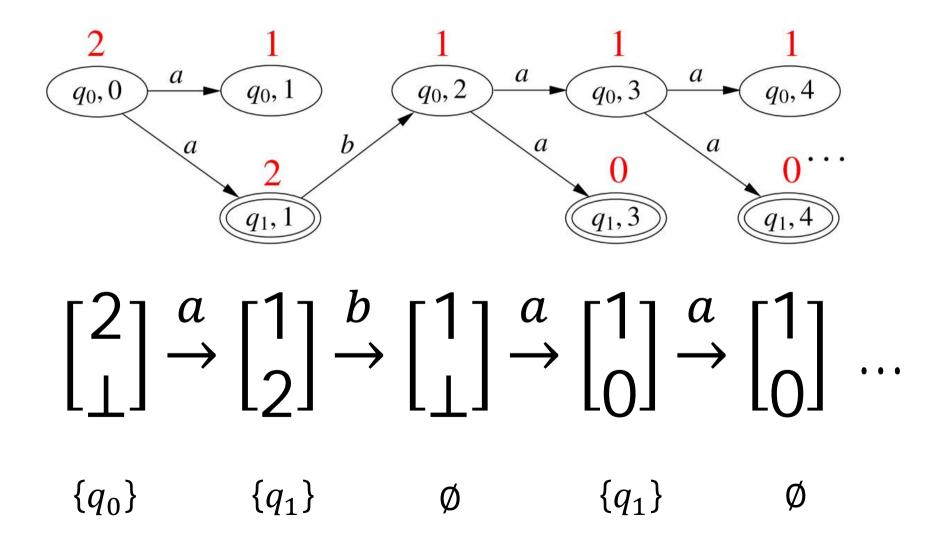
Accepting states?

- The accepting states should be chosen so that a run is accepted iff its corresponding ranking is odd.
- Problem: no way to do so when the only information of a state is the ranking.

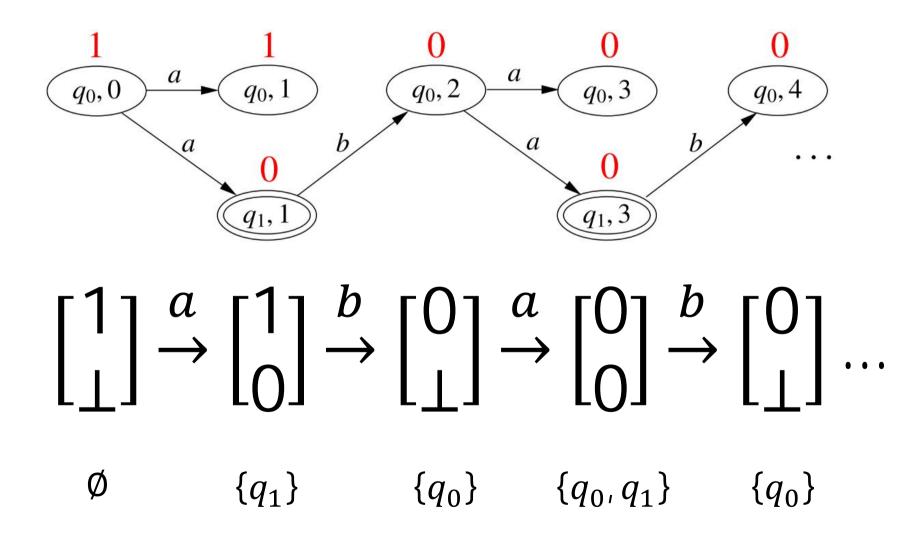
Owing states and breakpoints

- We use owing states and breakpoints again:
 - A breakpoint of a ranking is now a level of the ranking such that no node of the level owes a visit to a node of odd rank.
 - We have again: a ranking is odd iff it has infinitely many breakpoints.
 - We enrich the states of \overline{A} with a set of owing states, and choose the accepting states as those in which the set is empty.

Owing states



Owing states



Second draft for A

- For a two-state A (the case of more states is analogous):
 - States: pairs $\binom{n_1}{n_2}$, o where $0 \le n_1, n_2 \le 2n = 4$, accepting states get even rank, and o is a set of owing states (of even rank)
 - Initial states: all states of the form $\begin{bmatrix} n_1 \\ \bot \end{bmatrix}$, \emptyset
 - Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, $0 \stackrel{a}{\rightarrow} \begin{bmatrix} n_1' \\ n_2' \end{bmatrix}$, 0' s.t. ranks don't increase and owing states are correctly updated
 - Final states: all states $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, \emptyset

Second draft for A

- The runs of \overline{A} on a word w correspond to all the rankings of dag(w).
- The accepting runs of A on a word w correspond to all the odd rankings of dag(w).
- Therefore: $L(\bar{A}) = \overline{L(A)}$

Final \overline{A} (the final touch ...)

- We can reduce the number of initial states.
- For every ranking with ranks in the range
 [0,2n], changing the rank of all nodes of the
 first level to 2n yields again a ranking.
 Further, if the old ranking is odd then the new
 ranking is also odd.

So we can simplify the definition of the initial states to:

– Initial state:
$$\begin{bmatrix} 2n \\ 1 \end{bmatrix}$$
, \emptyset

An example

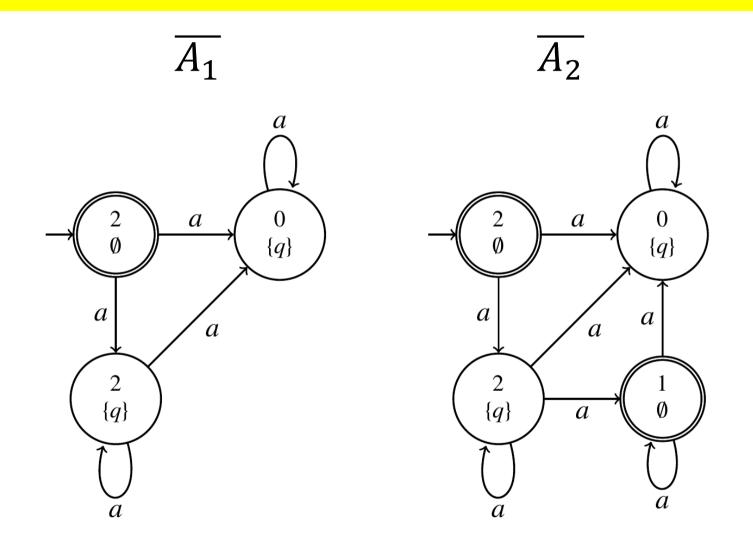
We construct the complements of

```
A_1 = (\{q\}, \{a\}, \delta, \{q\}, \{q\}) \text{ with } \delta(q, a) = \{q\}

A_2 = (\{q\}, \{a\}, \delta, \{q\}, \emptyset) \text{ with } \delta(q, a) = \{q\}
```

- States of A_1 : $\langle 0, \emptyset \rangle$, $\langle 2, \emptyset \rangle$, $\langle 0, \{q\} \rangle$, $\langle 2, \{q\} \rangle$
- States of A_2 : $\langle 0, \emptyset \rangle$, $\langle 1, \emptyset \rangle$, $\langle 2, \emptyset \rangle$, $\langle 0, \{q\} \rangle$, $\langle 2, \{q\} \rangle$
- Initial state of A_1 and A_2 : $\langle 2, \emptyset \rangle$
- Final states of A_1 : $\langle 2, \emptyset \rangle$, $\langle 0, \emptyset \rangle$ (unreachable)
- Final states of A_2 : $\langle 2, \emptyset \rangle$, $\langle 1, \emptyset \rangle$, $\langle 0, \emptyset \rangle$ (unreachable)

An example



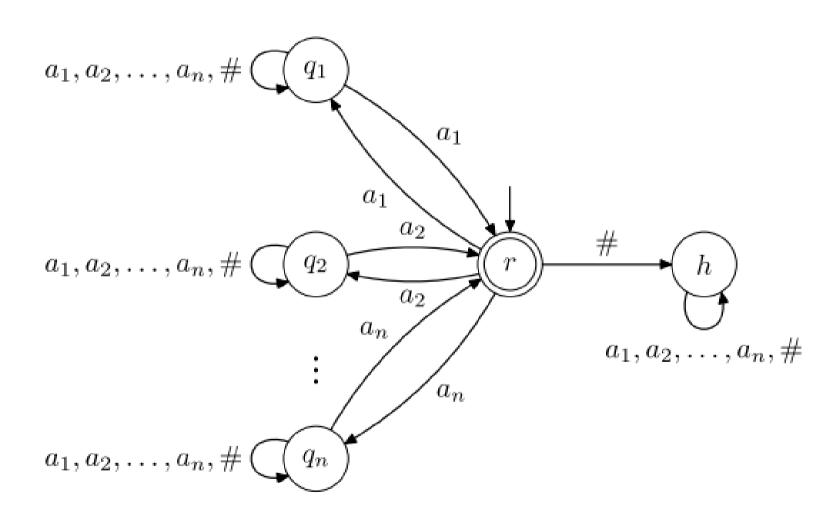
Complexity

- A state consists of a level of a ranking and a set of owing states.
- A level assigns to each state a number of [0,2n] or the symbol \bot .
- So the complement NBA has at most $(2n + 2)^n \cdot 2^n \in n^{O(n)} = 2^{O(n \log n)}$ states.
- Compare with 2ⁿ for the NFA case.
- We show that the $\log n$ factor is unavoidable.

We define a family $\{L_n\}_{n\geq 1}$ of ω -languages s.t.

- $-L_n$ is accepted by a NBA with n+2 states.
- Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.
- The alphabet of L_n is $\Sigma_n = \{1, 2, ..., n, \#\}$.
- Assign to a word $w \in \Sigma_n$ a graph G(w) as follows:
 - Vertices: the numbers $1,2,\ldots,n$.
 - Edges: there is an edge $i \rightarrow j$ iff w contains infinitely many occurrences of ij.
- Define: $w \in L_n$ iff G(w) has a cycle.

• L_n is accepted by a NBA with n + 2 states.



Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.

- Let τ denote a permutation of $1,2,\ldots,n$.
- We have:
 - a) For every τ , the word $(\tau \#)^{\omega}$ belongs to $\overline{L_n}$ (i.e., its graph contains no cycle).
 - b) For every two distinct τ_1, τ_2 , every word containing inf. many occurrences of τ_1 and inf. many occurrences of τ_2 belongs to L_n .

Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.

- Assume A recognizes $\overline{L_n}$ and let τ_1, τ_2 distinct. By (a), A has runs ρ_1, ρ_2 accepting $(\tau_1 \#)^{\omega}$, $(\tau_2 \#)^{\omega}$. The sets of accepting states visited i.o. by ρ_1, ρ_2 are disjoint.
 - Otherwise we can ``interleave" ρ_1 , ρ_2 to yield an acepting run for a word with inf. many occurrences of τ_1 , τ_2 , contradicting (b).
- So A has at least one accepting state for each permutation, and so at least n! states.