
Verification

Verification

• We use languages to describe the
implementation and the specification of a
system.

• We reduce the verification problem to
language inclusion between implementation
and specification

• Configuration: triple [푙,푛 ,푛] where
• 푙 is the current value of the program counter, and
• 푛 ,푛 are the current values of 푥,푦

Examples: [1,1,1], [5,0,1]

• Initial configuration: configuration with 푙 = 1

• Potential execution: finite or infinite sequence of configurations

Examples: [1,1,1][4,1,0]
[2,1,0][5,1,0]
[1,1,0][2,1,0][4,1,0][1,1,0]

• Execution: potential execution starting at an initial configuration,
and where configurations are followed by their „legal
successors“ according to the program semantics.

Examples: [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]
[1,1,0][2,1,0][4,1,0][1,1,0]

• Full execution: execution that cannot be extended (either infinite
or ending at a configuration without successors)

Verification as a language problem
• Implementation: set 퐸 of executions
• Specification:

– subset 푃 of the potential executions that satisfy a
property , or

– subset 푉 of the potential executions that violate a
property

• Implementation satisfies specification if :
 퐸 ⊆ 푃 , or
 퐸	 ∩ 푉 = 	∅.

• If 퐸 and 푃 regular: inclusion checkable with automata
• If 퐸 and 푉 regular: disjointness checkable with automata

• How often is the case that 퐸,푃,푉 are regular?

Verification as a language problem
• Implementation: set 퐸 of executions
• Specification:

– subset 푃 of the potential executions that satisfy a
property , or

– subset 푉 of the potential executions that violate a
property

• Implementation satisfies specification if :
 퐸 ⊆ 푃 , or
 퐸	 ∩ 푉 = 	∅.

• If 퐸 and 푃 regular: inclusion checkable with automata
• If 퐸 and 푉 regular: disjointness checkable with automata

• How often is the case that 퐸,푃,푉 are regular?

System NFA

System NFA

System NFA

Property NFA
• Is there a full execution such that

– initially 푦 = 1,
– finally 푦 = 0, and
– 푦 never increases?

• Set of potential executions for this property:
푙, 푥, 1 푙, 푥, 1 ∗	 푙, 푥, 0 ∗	[5, 푥, 0]

• Automaton for this set:

Intersection of the system and
property NFAs

• Automaton is empty, and so no execution satisfies the
property

Another property
• Is the assignment 푦 ← 푥 − 1 redundant?
• Potential executions that use the assignment:
푙, 푥,푦 ∗ 4,푥, 0 1,푥, 1 + 4, 푥, 1 1,푥, 0 	 푙, 푥, 푦 ∗

• Therefore: assignment redundant iff none of
these potential executions is a real execution
of the program.

Networks of automata

Networks of automata

• Tuple 풜 = 퐴 , … ,퐴 of NFAs .
• Each NFA has its own alphabet 	Σ of actions
• Alphabets usually not disjoint!
• 퐴 participates in action 푎 if 푎 ∈ Σ .
• A configuration is a tuple 푞 , … , 푞 of states, one for

each automaton of the network.
• 푞 , … , 푞 enables 푎 if every participant in 푎 is in a

state from which an 푎-transition is possible.
• Enabled actions can occur, and their occurrence

simultaneously changes the states of their
participants. Non-participants stay idle and don‘t
change their states.

Configuration
graph of the
network

Asynchronous product

Concurrent programs as networks of automata:
Lamport‘s 1-bit algorithm (JACM86)

Shared variables: b[0], ..., b[n-1] ∈ {0,1}, initially 0
Process i ∈ {0, ...,n-1}

repeat forever
noncritical section

T: b[i]:=1
for j ∈ {0, ...,i-1}

if b[j]=1 then b[i]:=0
await ¬b[j]
goto T

for j ∈ {i+1, ...,n-1} await	¬b[j]
critical section
b[i]:=0

Network for the two-process case

Asynchronous product

Checking properties of the algorithm

• Deadlock freedom: every configuration has at least one
successor.

• Mutual exclusion: no configuration of the form
[푏 , 푏 , 푐 , 푐] is reachable

• Bounded overtaking (for process 0): after process 0 signals
interest in accessing the critical section, process 1 can enter
the critical section at most one before process 0 enters.
– Let 푁퐶 ,푇 ,퐶 be the configurations in which process i is

non-critical, trying, or critical
– Set of potential executions violating the property:

The state-explosion problem

• In sequential programs, the number of
reachable configurations grows exponentially
in the number of variables.

• Proposition: The following problem is PSPACE-
complete.
– Given: a boolean program 휋 (program with only

boolean variables), and a NFA 퐴 recognizing a
set of potential executions

– Decide: Is 퐸 ∩ 퐿(퐴) empty?

The state-explosion problem

• In concurrent programs, the number of
reachable configurations also grows
exponentially in the number of components.

• Proposition: The following problem is PSPACE-
complete.
– Given: a network of automata 풜 = 퐴 , … ,퐴 	

and a NFA 퐴 recognizing a set of potential
executions of 풜

– Decide: Is 퐿 퐴 ⊗⋯⊗퐴 ⊗퐴 = ∅ ?

On-the-fly Verification

Compositional verification
To check emptiness of an asynchronous product
퐴 ⊗⋯⊗퐴 we can

– Replace 퐴 by an automaton 퐴 recognizing 푝푟표푗 ∖ (퐿 퐴)
and compute 퐴 = 퐴 ⊗ 퐴 ;

– Replace 퐴 by an automaton 퐴 recognizing
푝푟표푗 ∖(∪)(퐿 퐴) and compute 퐴 = 퐴 ⊗ 퐴 ;

– ⋯
– Replace 퐴 () by an automaton 퐴 () recognizing
푝푟표푗 ∖(∪⋯∪) 퐿 퐴 	and compute
퐴 = 퐴 () ⊗퐴

This can save space w.r.t. the direct computation .

Compositional verification

Compositional verification

퐴 퐴

Compositional verification
퐴 퐴 (proj. on visible actions)

Symbolic exploration

• A technique to palliate the state-explosion
problem

• Configurations can be encoded as words.
• The set of reachable configurations of a

program can be encoded as a language.
• We use automata to compactly store the set

of reachable configurations.

Flowgraphs

Step relations

• Let 푙, 푙′ be two control points of a flowgraph.
• The step relation 푆 , contains all pairs

(푙, 푥 ,푦 , 푙 , 푥 ,푦)
of configurations such that :

if at point 푙 the current values of 푥,푦	are 푥 ,푦 ,
then the program can take a step,
after which the new control point is 푙′, and the new
values of 푥,푦 are 푥 ,푦 .

푆 , = 	 	 4, 푥 ,푦 , 1, 푥 , 1 − 푥 	 		 		푥 ,푦 ∈ 0,1 		}

• The global step relation 푆 is the union of the step
relations 푆 , 	for all pairs 푙, 푙 of control points.

Computing reachable configurations

• Start with the set of initial configurations.
• Iteratively: add the set of successors of the

current set of configurations until a fixed point
is reached.

푃 = 퐼	

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

푃 = 퐼	

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

푃 = 퐼	

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

푃 = 퐼	

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

푃 = 퐼	

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

푃 = 푃 ∪ 푃표푠푡 푃 , 푆

Example: Transducer for the global step relation

• Initial configurations

• Configurations reachable in at most 1 step

Example: DFAs generated by Reach

• Configurations reachable in at most 2 steps

Example: DFAs generated by Reach

• Configurations reachable in at most 3 steps

Example: DFAs generated by Reach

Variable orders
• Consider the set 푌 of tuples [푥 , … , 푥] of booleans such

that 푥 = 푥 , 푥 = 푥 , … , 푥 = 푥
• A tuple [푥 , … , 푥] can be encoded by the word
푥 푥 …푥 푥 but also by the word 푥 푥 …푥 푥 .

• For 푘 = 3, the encodings of 푌 are then, respectively

• The minimal DFAs for these languages have very
different sizes!

Another example: Lamport‘s algorithm

푣 , 푣 , 푠 , 푠 	
encoded by
푠 푠 푣 푣

푣 , 푣 , 푠 , 푠 	
encoded by
푣 푠 푠 푣

Larger sets can yield smaller DFAs!

• DFAs after adding the configuration 푐 , 푐 , 1,1 to the set

• When encoding configurations, good variable
orders can lead to much smaller automata.

• Unfortunately, the problem of finding an
optimal encoding for a language represented
by a DFA is NP-complete.

