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Verification

• We use languages to describe the 
implementation and the specification of a 
system. 

• We reduce the verification problem to 
language inclusion between implementation 
and specification



• Configuration: triple  [푙,푛 ,푛 ] where 
• 푙 is the current value of the program counter, and
• 푛 ,푛 are the current values of 푥,푦

Examples: [1,1,1], [5,0,1]

• Initial configuration:  configuration with  푙 = 1

• Potential execution: finite or infinite sequence of configurations

Examples: [1,1,1][4,1,0]
[2,1,0][5,1,0]
[1,1,0][2,1,0][4,1,0][1,1,0]



• Execution: potential execution starting at an initial configuration, 
and where configurations are followed by their „legal 
successors“ according to the program semantics.

Examples: [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]
[1,1,0][2,1,0][4,1,0][1,1,0]

• Full execution: execution that cannot be extended (either infinite 
or ending at a configuration without successors)



Verification as a language problem 
• Implementation:  set  퐸 of executions
• Specification: 

– subset  푃 of the potential executions that  satisfy a 
property , or

– subset  푉 of the potential executions that violate a 
property

• Implementation satisfies specification if :  
 퐸 ⊆ 푃 , or 
 퐸	 ∩ 푉 = 	∅.   

• If  퐸 and  푃 regular: inclusion checkable with automata
• If  퐸 and  푉 regular: disjointness checkable with automata

• How often is the case that 퐸,푃,푉 are regular?
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Property NFA
• Is there a full execution such that

– initially 푦 = 1,
– finally 푦 = 0,  and
– 푦 never increases?

• Set of potential executions for this property:
푙, 푥, 1 푙, 푥, 1 ∗	 푙, 푥, 0 ∗	[5, 푥, 0]

• Automaton for this set:



Intersection of the system and 
property NFAs

• Automaton is empty, and so no execution satisfies the 
property



Another property
• Is the assignment  푦 ← 푥 − 1 redundant?
• Potential executions that use the assignment:
푙, 푥,푦 ∗ 4,푥, 0 1,푥, 1 + 4, 푥, 1 1,푥, 0 	 푙, 푥, 푦 ∗

• Therefore: assignment redundant iff none of 
these potential executions is a real execution 
of the program. 



Networks of automata



Networks of automata



• Tuple 풜 = 퐴 , … ,퐴 of NFAs .
• Each NFA has its own alphabet 	Σ of actions
• Alphabets usually not disjoint! 
• 퐴 participates in action 푎 if 푎 ∈ Σ .
• A configuration is a tuple 푞 , … , 푞 of states, one for 

each automaton of the network.
• 푞 , … , 푞 enables 푎 if every participant in 푎 is in a 

state from which an 푎-transition is possible.
• Enabled actions can occur, and their occurrence 

simultaneously changes the states of their 
participants. Non-participants stay idle and don‘t 
change their states.



Configuration 
graph of the 
network



Asynchronous product



Concurrent programs as networks of automata: 
Lamport‘s 1-bit algorithm (JACM86)

Shared variables:  b[0], ..., b[n-1] ∈ {0,1}, initially 0
Process i ∈ {0, ...,n-1} 

repeat forever
noncritical section

T:  b[i]:=1
for j ∈ {0, ...,i-1} 

if b[j]=1 then b[i]:=0
await ¬b[j]
goto T

for j ∈ {i+1, ...,n-1}  await	¬b[j]
critical section
b[i]:=0



Network for the two-process case



Asynchronous product 



Checking properties of the algorithm

• Deadlock freedom: every configuration has at least one 
successor.

• Mutual exclusion: no configuration of the form 
[푏 , 푏 , 푐 , 푐 ] is reachable

• Bounded overtaking (for process 0): after process 0 signals 
interest in accessing the critical section, process 1 can enter 
the critical section at most one before process 0 enters. 
– Let 푁퐶 ,푇 ,퐶 be the configurations in which process i is 

non-critical, trying, or critical
– Set of potential executions violating the property:



The state-explosion problem

• In sequential programs, the number of 
reachable configurations grows exponentially 
in the number of variables.

• Proposition: The following problem is PSPACE-
complete. 
– Given: a boolean program  휋 (program with only 

boolean variables), and a NFA  퐴 recognizing a 
set of potential executions

– Decide:  Is 퐸 ∩ 퐿(퐴 ) empty?



The state-explosion problem

• In concurrent programs, the number of 
reachable configurations also grows 
exponentially in the number of components.

• Proposition: The following problem is PSPACE-
complete. 
– Given: a network of automata 풜 = 퐴 , … ,퐴 	

and a NFA 퐴 recognizing a set of potential 
executions of 풜

– Decide:  Is 퐿 퐴 ⊗⋯⊗퐴 ⊗퐴 = ∅ ?



On-the-fly Verification



Compositional verification
To check emptiness of an asynchronous product
퐴 ⊗⋯⊗퐴 we can

– Replace 퐴 by an automaton 퐴 recognizing 푝푟표푗 ∖ (퐿 퐴 )
and compute 퐴 = 퐴 ⊗ 퐴 ;

– Replace 퐴 by an automaton 퐴 recognizing
푝푟표푗 ∖( ∪ )(퐿 퐴 ) and compute 퐴 = 퐴 ⊗ 퐴 ;

– ⋯
– Replace 퐴 ( ) by an automaton 퐴 ( ) recognizing
푝푟표푗 ∖( ∪⋯∪ ) 퐿 퐴 	and compute
퐴 = 퐴 ( ) ⊗퐴

This can save space w.r.t. the direct computation .



Compositional verification



Compositional verification

퐴 퐴



Compositional verification
퐴 퐴 (proj. on visible actions) 



Symbolic exploration

• A technique to palliate the state-explosion 
problem

• Configurations can be encoded as words.
• The set of reachable configurations of a 

program can be encoded as a language.
• We use automata to compactly store the set 

of reachable configurations.



Flowgraphs



Step relations

• Let 푙, 푙′ be two control points of a flowgraph.
• The step relation 푆 , contains all pairs 

(	 푙, 푥 ,푦 , 푙 , 푥 ,푦 	)
of configurations such that :

if at point 푙 the current values of 푥,푦	are 푥 ,푦 , 
then the program can take a step,
after which the new control point is 푙′, and the new 
values of 푥,푦 are  푥 ,푦 .



푆 , = 	 	 4, 푥 ,푦 , 1, 푥 , 1 − 푥 	 		 		푥 ,푦 ∈ 0,1 		}

• The global step relation 푆 is the union of the step 
relations 푆 , 	for all pairs  푙, 푙 of control points.



Computing reachable configurations

• Start with the set of initial configurations.
• Iteratively:  add the set of successors of the 

current set of configurations until a fixed point 
is reached.
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Example: Transducer for the global step relation



• Initial configurations

• Configurations reachable in at most 1 step

Example: DFAs generated by Reach 



• Configurations reachable in at most 2 steps

Example: DFAs generated by Reach 



• Configurations reachable in at most 3 steps

Example: DFAs generated by Reach 



Variable orders
• Consider the set 푌 of tuples [푥 , … , 푥 ] of booleans such 

that 푥 = 푥 , 푥 = 푥 , … , 푥 = 푥
• A tuple [푥 , … , 푥 ] can be encoded by the word 
푥 푥 …푥 푥 but also by the word 푥 푥 …푥 푥 .

• For 푘 = 3, the encodings of 푌 are then, respectively

• The minimal DFAs for these languages have very
different sizes!





Another example: Lamport‘s algorithm

푣 , 푣 , 푠 , 푠 	
encoded by 
푠 푠 푣 푣

푣 , 푣 , 푠 , 푠 	
encoded by 
푣 푠 푠 푣



Larger sets can yield smaller DFAs!

• DFAs after adding the configuration 푐 , 푐 , 1,1 to the set



• When encoding configurations, good variable 
orders can lead to much smaller automata.

• Unfortunately, the problem of finding an 
optimal encoding for a language represented 
by a DFA is NP-complete.


