
Operations and tests on sets: 
Implementation on DFAs



Operations and tests

Universe of objects 푈, sets of objects 푋,푌, object 푥.



Implementation on DFAs

• Assumption: each object encoded by one word, and
vice versa.

• Membership: trivial algorithm, linear in the length of
the word.

• Complement: exchange final and non-final states. 
Linear (or even constant) time.

• Generic implementation of binary boolean operations
based on pairing.



Pairing

Definition. Let 퐴 = (푄 ,Σ, 훿 , 푞 ,퐹 ) and 
퐴 = (푄 ,Σ, 훿 ,푞 ,퐹 ) be DFAs. 

The pairing 퐴 ,퐴 of 퐴 and 퐴 is the tuple (푄,Σ, 훿, 푞 )
where
• 푄 = { 푞 , 푞 ∣ 푞 ∈ 푄 , 푞 ∈ 푄 }

• 훿 = 푞 ,푞 ,푎, 푞 , 푞 푞 ,푎, 푞 ∈ 훿 , 푞 ,푎, 푞 ∈ 훿

• 푞 = 푞 , 푞

The run of 퐴 ,퐴 on a word of Σ∗ is defined as for DFAs



Pairing



Pairing
• Another example:  DFA for the language of words

with an even number of 푎s and even number of 푏s 
(and even number of 푐s …).



Generic algorithm for binary boolean
operations

• We assign to a binary boolean operator ⊙ an operation 
on languages ⊙ as follows:

퐿 ⊙  퐿 =  푤 ∈ Σ∗ 푤 ∈ 퐿 ⊙ 푤 ∈ 퐿

• For example:



Generic algorithm for binary boolean
operations



Generic algorithm for binary boolean
operations

• Complexity: the pairing of DFAs with 푛 and 
푛 states has 푂 푛 ⋅ 푛 states.

• Hence: for DFAs with 푛 and 푛 states over an 
alphabet with 푘 letters, binary operations can 
be computed in 푂 푘 ⋅ 푛 ⋅ 푛 time.

• Further: there is a family of languages for
which the computation of intersection takes
Θ(푘 ⋅ 푛 ⋅ 푛 ) time.



Language tests

• Emptiness: a DFA is empty iff 
it has no final states

• Universality: a DFA is universal iff 
it has only final states

• Inclusion: 퐿 ⊆ 퐿 iff 퐿   ⃥ 퐿 = Ø

• Equality: 퐿 = 퐿 iff  (퐿   ⃥ 퐿 )  ∪ (퐿   ⃥ 퐿 ) = Ø



Inclusion test



Operations and tests on sets: 
Implementation on NFAs



Membership



Membership

Complexity: 
• While loop executed 푤 times
• For loop executed at most |푄| times
• Each execution of the loop body takes
푂 푄 time

• Overall: 푂( 푄 ⋅ 푤 ) time



Complement

• Swapping final and non-final states does not work

• Solution: determinize and then swap states

• Problem: Exponential blow-up in size!!

To be avoided whenever possible!!

• No better way: there are NFAs with 푛 states such 
that the smallest NFA for their 
complement has Θ 2 states.



Union and intersection

• The pairing construction still works for intersection, with
the same complexity.

• It also works for union, but only if the NFAs are complete, 
i.e., they have at least one run for each word.

• Optimal construction for intersection (same example as
for DFAs).

• Non-optimal construction for union. There is another
construction which produces an NFA with 푄 + 푄
states, instead of 푄 ⋅ 푄 : just put the automata side
by side!



Intersection



Intersection



Emptiness and Universality

• Like DFAs, an NFA is empty iff every state is
non-final.

• However, contrary to DFAs, it does not hold 
that an NFA is universal iff every state is final. 
Both directions fail!

• Emptiness is decidable in linear time.
• Universality is PSPACE-complete.



Crash course on PSPACE
• PSPACE: Class of decision problems for which there is an 

algorithm that
• always terminates and returns the correct answer, and
• only uses polynomial memory in the size of the input. 

• P ⊆ NP ⊆ PSPACE. It is unknown if the inclusions are strict.
• NPSPACE: Class of decision problems for which there is a 

nondeterministic algorithm that
• does not terminate or terminates and answers„no“ for no-

inputs,
• has at least one terminating execution answering „yes“ for

yes-inputs, and
• only uses polynomial memory in the size of the input. 

• Savitch´s theorem: PSPACE=NPSPACE



• PSPACE-complete: A problem Π is PSPACE-complete if
• it belongs to PSPACE, and
• every PSPACE-problem can be reduced in polynomial time 

to Π.
• PSPACE-complete problems: 

• Given a deterministic Turing machine 푀 that only visits the
cell tapes occupied by the input,  and an input 푥, does 푀
accept 푥 ?

• Is a given quantified boolean formula true?

Crash course on PSPACE



Universality is PSPACE complete



Universality is PSPACE complete



Universality is PSPACE complete



Universality is PSPACE complete



• Complement and check for emptiness
– Needs exponential time and space.

• Improvements:
– Check for emptiness while complementing

(on-the-fly check).
– Subsumption test.

Deciding universality of NFAs



Subsumption test

• Let 퐴 be an NFA and let 퐵 = 푁퐹퐴푡표퐷퐹퐴(퐴). A state 푄′
of 퐵 is minimal if no other state 푄′′ satisfies 푄 ⊂ 푄 .

• Proposition: 퐴 is universal iff every minimal state of 퐵 is 
final.
Proof: 
퐴 is universal 
iff 퐵 is universal 
iff every state of 퐵 is final  
iff every state of 퐵 contains a final state of 퐴
iff every minimal state of 퐵 contains a final state of 퐴
iff every minimal state of 퐵 is final



Subsumption test



Subsumption test



Subsumption test

• But is it correct ?
By removing a non-minimal state we may be
preventing the discovery of a minimal state in 
the future!



Proposition: Let 퐴 be an NFA and let 퐵 = 푁퐹퐴푡표퐷퐹퐴(퐴). 
After termination of UnivNFA(A) the set 풬 contains all 
minimal states of 퐵.
Proof:  Assume the contrary. Then 퐵 has a shortest path 
푄 → 푄 →  …  → 푄 such that 

- 푄 ∈  풬 (after termination), and 
- 푄 ∉  풬 and  푄 is minimal.

Since the path is shortest,  푄 ∉ 풬 and so when UnivNFA
processes 푄 ,  it does not add 푄 . This can only be 
because UnivNFA already added some 푄 ⊂ 푄 .
But then 퐵 has a path 푄 →  …  → 푄 with 푄 ⊆ 푄 . 
Since 푄 is minimal, 푄 is minimal (actually 푄 = 푄 ).
So the path 푄 →  …  → 푄 satisfies

- 푄 ∈ 풬 (after termination), and 
- 푄 is minimal.

contradicting that 푄 → 푄 →  …  → 푄 is shortest.

Subsumption test
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Inclusion

• Proposition: The inclusion problem is PSPACE-complete.
• Proof: 

Membership in PSPACE. By Savitch´s theorem it suffices to
give a nondeterministic algorithm for non-inclusion. For this, 
guess letter by letter a word, storing the sets of states 푄 ,푄
reached by both NFAs on the word guessed so far. Stop when
푄 contains a final state, but 푄 does not.
PSPACE-hardness. 퐴 is universal iff 퐿 퐴 ⊆ 퐿(퐵), where 퐵 is
the one-state DFA for Σ∗.



Deciding inclusion
• Algorithm: use  퐿 ⊆ 퐿 iff  퐿 ∩  퐿 = Ø
• Concatenate four algorithms:

(1) determinize 퐴 ,
(2) complement the result,
(3) intersect it with 퐴 , and
(4) check for emptiness.

• State of (3): pair (푞,푄) , where 푞 ∈ 푄 and 푄 ⊆ 푄
• Easy optimizations:

– store only the states of (3), not its transitions;
– do not perform (1), then (2), then (3); instead, construct 

directly the states of (3);
– check (4) while constructing (3).



Deciding inclusion
• Further optimization: subsumption test.



• Complexity:
– Let 퐴 ,퐴 be NFAs with 푛 ,푛 states over an alphabet 

with 푘 letters.

– Without the subsumption test:
• The while-loop is executed at most  푛 2 times.

• The for-loop is executed at most 푂 푘 푛 times.

• An execution of the for-loop takes 푂 푛 time.

• Overall: 푂(푘  푛 푛 2 ) time.

– With the subsumption case the worst-case complexity is 
higher. Exercise: give an upper bound.

Deciding inclusion



• Important special case: 퐴 is an NFA, 퐴 is a DFA.
– Complementing  퐴 is now easy.

– The while-loop is executed 푂(푛 푛 ) times.
– The for-loop is executed 푘 times.
– An execution of the for-loop takes constant time.

– Overall: 푂(푘 푛 푛 ) time.

• Checking equality: check inclusion in both 
directions.

Deciding inclusion


