Automata and Formal Languages — Endterm Exam

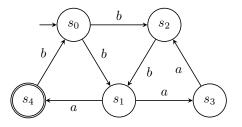
- You have 120 minutes to complete the exam.
- Answers must be written in a separate booklet. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable pen. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points. You need 17 points to pass.
- The \bigstar symbol indicates a more challenging question.

Question 1 (11 points)

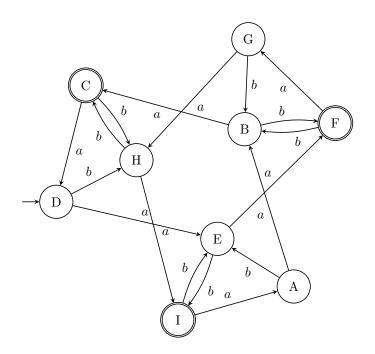
- a. Let Σ be the alphabet $\{a, b\}$, and let p be the word pattern *ababaa*. Build the DFA B_p (obtained by determinizing the naive NFA A_p for $\Sigma^* p$).
- b. Give the fragment of the master automaton that contains the states of the language $L = \{aab, bbb, bab\}$ and all its residuals (all the states between q_L and q_{\emptyset}).
- c. Given a word w over the alphabet $\Sigma = \{a, b\}$ we define \overline{w} to be the word obtained from w by replacing a by b, and b by a. For example, $\overline{aababba} = bbabaab$ and $\overline{babb} = abaa$. Decide whether the language $L = \{w\overline{w} : w \in \Sigma^*\}$ is regular or irregular, and prove this by analyzing its residuals.
- d. Give a regular expression recognizing the language of the following the MSO formula

$$\varphi = \exists x \exists y. \ x \neq y \land Q_a(x) \land Q_a(y) \land [\forall z. (z \neq x \land z \neq y) \to (Q_b(z) \land x < z \land z < y)].$$

e. Consider the following NBA.



Draw $dag(b(baa)^{\omega})$. Does it admit an odd ranking? Give such a ranking if it exists, and provide a short justification if it does not.

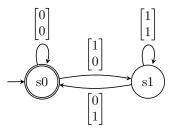


- (a) Compute the language partitions of \mathcal{A} .
- (b) Draw the minimal automaton using the language partitions from (a).

Question 3 (6 points)

Given $n \in \mathbb{N}$, let msbf(n) be the set of most significant bit first encodings of n, i.e., the words that start with an arbitrary number of leading zeros, followed by n written in binary. For example, $msbf(6) = 0^*110$ and $msbf(3) = 0^*11$. Let val : $\{0, 1\}^* \to \mathbb{N}$ be the function that associates to every word $w \in \{0, 1\}^*$ the number val(w) represented by w in the most significant bit first encoding. For example, val(110) = 6 and val(011) = 3.

a. Let T be the following transducer over alphabet $\Sigma = \{0, 1\} \times \{0, 1\}$.



What is the relation between val(x) and val(y), for any [x, y] accepted by T?

b. Draw a transducer ${\cal T}_{+1}$ recognizing the language

$$\left\{ [x, y] \in \Sigma^* \mid \operatorname{val}(y) = \operatorname{val}(x) + 1 \right\}.$$

Question 4 (5 points)

Recall: A process can send a message m to the channel with the instruction c ! m. A process can also consume the first message of the channel with the instruction c ? m. If the channel is full when executing c ! m, then the process blocks and waits until it can send m. When a process executes c ? m, it blocks and waits until the first message of the channel becomes m.

Suppose there are two processes being executed concurrently that communicate through a channel c. Channel c is a queue that can store up to 1 message. The two processes follow these two algorithms respectively:

```
process(1):
   while true do
        c!m
        /* critical section */
        c?m
process(2):
   while true do
        c?m
        c?m
        c?m
        /* critical section */
        c!m
```

- a. Model the program by constructing a network of three automata:
 - One for process 1, using the alphabet $\Sigma_1 = \{c?m, c!m, cs_1\},\$
 - One for process 2, using the alphabet $\Sigma_2 = \{\overline{c?m}, \overline{c!m}, cs_2\},\$
 - One for the channel c of size 1, that is initially empty, using the alphabet $\Sigma_c = \{c?m, c!m, \overline{c?m}, \overline{c!m}\}$.
- b. Construct the asynchronous product \mathcal{P} of the three automata obtained in (a). The alphabet of the automaton \mathcal{P} should be $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_c$.
- c. Consider the state of the asynchronous product \mathcal{P} where both processes are in the critical section. Is this state reachable? Give a short justification based on automaton \mathcal{P} .

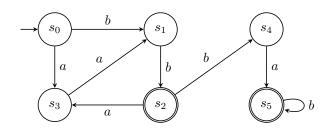
Question 5 (3 points)

Consider the following DBAs B_1 and B_2 :

- a. Give ω -regular expressions recognizing the languages of B_1 and B_2 .
- b. Give the DBA $B_1 \cap B_2$ using the algorithm seen in class. Give an ω -regular expression for $B_1 \cap B_2$.

Question 6 (3 points)

Let B be the following Büchi automaton.



- a. For every state of B, give the discovery time and finishing time assigned by a DFS on B starting in s_0 (i.e. the moment they first become grey and the moment they become black). Visit successors s_i of a given state in the ascending order of their indices i. For example, when visiting the successors of s_2 , first visit s_3 and later s_4 .
- b. The language of B is not empty. Give the witness lasso (as a sequence of states) found by applying TwoStack to B following the same convention for the order of successors as above.

Question 7 (6 points)

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Recall: An LTL formula is a tautology if it is satisfied by all computations.

- a. Is the following formula a tautology: $(\mathbf{GF}p \wedge \mathbf{GF}q) \Rightarrow \mathbf{G}(p \ \mathbf{U} \ q)$? Provide a formal proof if it is and a counter-example if it is not.
- b. Is the following formula a tautology: $\mathbf{G}(p \ \mathbf{U} \ q) \Rightarrow (\mathbf{GF}p \lor \mathbf{GF}q)$? Provide a formal proof if it is and a counter-example if it is not.
- c. Give a Büchi automaton for the ω -language over Σ defined by the following LTL formula: $\mathbf{G}(p \mathbf{U} q)$.

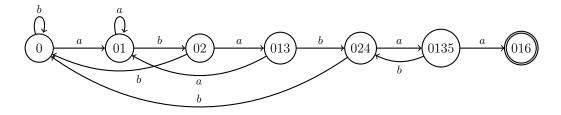
Question 8 (3 points)

★ Given a language L we define the language $Cycle(L) = \{vu \mid uv \in L\}$. For example, if $L = \{ab, abcd\}$ then $Cycle(L) = \{ab, ba, abcd, bcda, cdab, dabc\}$; in particular, acbd is not in Cycle(L) as it cannot be written as vu such that $uv \in L$.

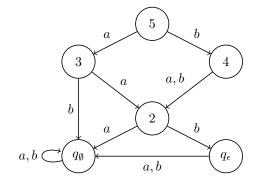
Find a language L such that L is not regular and Cycle(L) is regular. Give proofs for both statements.

Solution 1 (11 points)

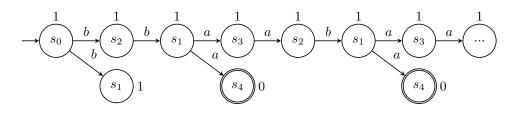
a. The automaton B_p for p = ababaa is given below:



b. The fragment of the master automaton for the language L is given below:



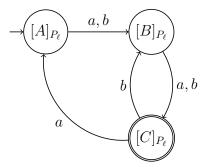
- c. The language L is irregular as it has infinitely many residuals. Let us prove that the set of residuals $\{L^{a^i}: i \in \mathbb{N}\}$ in infinite, that is, that any two residuals from this set are indeed different. If $i \neq j$, then we have that $b^i \in L^{a^i}$ and $b^i \notin L^{a^j}$. Therefore, it holds that $L^{a^i} \neq L^{a^j}$. IMPORTANT! The fact that $b^i \in L^{a^i}$ and $b^j \notin L^{a^i}$ is correct, but it does not prove that $L^{a^i} \neq L^{a^j}$.
- d. The regular expression is ab^*a recognizes the MSO formula.
- e. The dag for $b(baa)^{\omega}$:



A possible odd ranking is annotated on the *dag*. In particular it exists because $b(baa)^{\omega}$ is *not* accepted by the NBA.

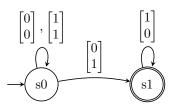
Solution 2 (3 points)

- The language partition is $P_{\ell} = \{\{A, D, G\}, \{B, E, H\}, \{C, F, I\}\}.$
- The minimal automaton is given below:



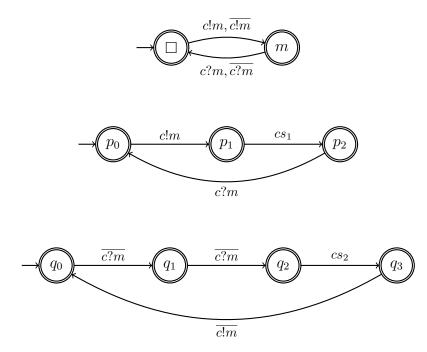
Solution 3 (6 points)

- a. The value val(x) is equal to twice val(y), i.e. $L(T) = \{[x, y] \in \Sigma^* \mid val(x) = 2 \times val(y)\}$.
- b. Transducer T_{+1} :

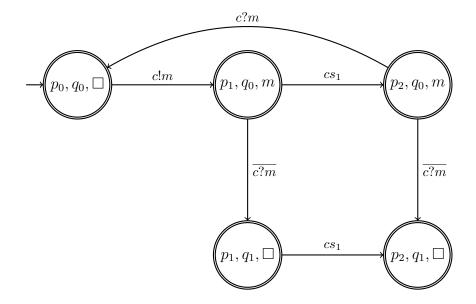


Solution 4 (5 points)

a. The automata for the channel, process(1) and process(2) are respectively:



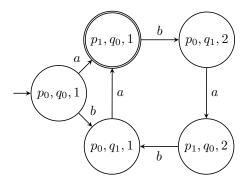
b. The asynchronous product \mathcal{P} is given below:



c. The state where both processes are in the critical section is not reachable, since \mathcal{P} does not contain any of the states (p_1, q_2, \Box) and (p_1, q_2, m) .

Solution 5 (3 points)

- a. $L(B_1) = (b^*ab)$ and $L(B_2) = (a^* + ba)^{\omega}$.
- b. The intersection of B_1 and B_2 using *IntersNBA* yields:



The language of $B_1 \cap B_2$ is $a(ba)^{\omega} + b(ab)^{\omega}$.

Solution 6 (3 points)

a. We note "state[discovery time/finishing time]".

- If we start at 1: $s_0[1/12], s_1[2/11], s_2[3/10], s_3[4/5], s_4[6/9], s_5[7/8].$
- If we start at 0: $s_0[0/11], s_1[1/10], s_2[2/9], s_3[3/4], s_4[5/8], s_5[6/7].$
- b. The lasso found by TwoStack from s_0 is $s_0s_1s_2s_3s_1$.

Solution 7 (6 points)

- a. The formula is not a tautology. Here are two counterexamples: $(\{p\} \emptyset \{q\})^{\omega}$ and $\emptyset \{p,q\}^{\omega}$.
- b. This formula is a tautology. We prove this by contradiction.

Suppose the formula is not a tautology. Then there exists an execution σ that does not satisfy it, that is, the following holds:

$$\sigma \not\models \mathbf{G}(p \mathbf{U} q) \Rightarrow (\mathbf{GF}p \lor \mathbf{GF}q).$$

Therefore, we have the following:

$$\sigma \models \mathbf{G}(p \mathbf{U} q),\tag{1}$$

$$\sigma \not\models \mathbf{GF}p \lor \mathbf{GF}q. \tag{2}$$

First, note that from (1) we know the following:

$$\sigma^k \models p \mathbf{U} q, \quad \text{for every } k \ge 0. \tag{3}$$

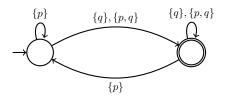
Second, note that (2) is equivalent to $\sigma \models \mathbf{FG} \neg p \land \mathbf{FG} \neg q$, that is $\sigma \models \mathbf{FG} \neg p$ and $\sigma \models \mathbf{FG} \neg q$. Since we have that $\sigma \models \mathbf{FG} \neg q$, by definition of the operator \mathbf{F} we know the following:

$$\sigma^i \models \mathbf{G} \neg q, \quad \text{for some } i \ge 0. \tag{4}$$

By definition of **G** this means the following:

$$\sigma^{j} \models \neg q, \quad \text{for every } j \ge i. \tag{5}$$

Let us now focus again on (3) and on the index *i* defined in (4). From (3) we know that also for this particular index *i* it holds that $\sigma^i \models p \mathbf{U} q$. Therefore, by definition of \mathbf{U} , we know that there exists an index $l \ge i$ with $\sigma^l \models q$. This contradicts (5), and hence our assumption that the formula is not a tautology is wrong. This shows that the formula is indeed a tautology.



Solution 8 (3 points)

One possible solution language is $L = \{a^n b a^n \mid n \in \mathbb{N}\}$. For any $i \neq j$, $a^i b \in L^{a^i}$ but $a^j b \notin L^{a^i}$ so the $(L^{a^i})_i$ are an infinite family of residuals, thus proving that L is not a regular language. The language Cycle(L) on the other hand is regular, as it is recognizable by the following DFA.

