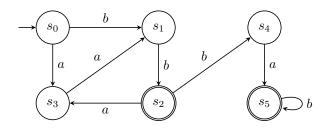
Automata and Formal Languages — Exercise Sheet 12

Exercise 12.1

Let B be the following Büchi automaton.



- (a) For every state of B, give the discovery time and finishing time assigned by a DFS on B starting in s_0 (i.e. the moment they first become grey and the moment they become black). Visit successors s_i of a given state in the ascending order of their indices i. For example, when visiting the successors of s_2 , first visit s_3 and later s_4 .
- (b) The language of B is not empty. Give the witness lasso found by applying NestedDFS to B following the same convention for the order of successors as above.
- (c) Is the execution in (b) optimal? Does there exists an optimal execution of NestedDFS on B with a different order for visiting successors?

Exercise 12.2

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give LTL formulas for the following ω -languages:

- (a) $\Sigma \{p,q\} \{q\}^{\omega}$
- (b) $\Sigma^* \{q\}^{\omega}$
- (c) $\Sigma^* \emptyset \Sigma^{\omega}$
- (d) $\{p\}^* \{p,q\} (\{p\} + \{p,q\})^{\omega}$
- (e) $\{p\}^* \{q\}^* \emptyset^{\omega}$

Exercise 12.3

Let $AP = \{p, q, r\}$. Give formulas for the computations satisfying the following properties:

- (a) if q eventually holds, then p must not hold before q first does.
- (b) if q eventually holds, then p holds at some point before q first holds.
- (c) p always holds everywhere between q and r.
- (d) p, and only p, holds at even positions and q, and only q, holds at odd positions.

Exercise 12.4

The weak until operator \mathbf{W} has the following semantics:

• $\sigma \models \phi_1 \mathbf{W} \phi_2$ iff there exists $k \ge 0$ such that $\sigma^k \models \phi_2$ and $\sigma^i \models \phi_1$ for all $0 \le i < k$, or $\sigma^k \models \phi_1$ for every $k \ge 0$.

Prove: $p \mathbf{W} q \equiv \mathbf{G} p \lor (p \mathbf{U} q) \equiv \mathbf{F} \neg p \rightarrow (p \mathbf{U} q) \equiv p \mathbf{U} (q \lor \mathbf{G} p).$

Solution 12.1

- a. We note "state[discovery time/finishing time]". $s_0[1/12], s_1[2/11], s_2[3/10], s_3[4/5], s_4[6/9], s_5[7/8].$
- b. The lasso found by NestedDFS from s_0 is $s_0s_1s_2s_3s_4s_5s_5$.
- c. Given a non-empty NBA, we use the following definition of optimal execution of NestedDFS: the algorithm reports NONEMPTY at the earliest time such that all the states of a witness lasso have been explored.

The execution given in (b) is non optimal since it does not return the lasso $s_0s_1s_2s_3s_1$ which already appeared in the explored subgraph.

There is no execution of NestedDFS which blackens s_2 before s_5 . But there is an execution of NestedDFS on B which returns the lasso $s_0s_1s_2s_3s_4s_5s_5$ before it has visited the only other witness lasso $s_0s_1s_2s_3s_1$ and thus is optimal: the execution which does dfs1 via $s_0s_1s_2s_4s_5$, blackens s_5 then launches dfs2 from s_5 and finds a cycle. Node s_3 is not part of the explored subgraph so the algorithm reports NONEMPTY at the earliest time such that all the states of a witness lasso have been explored.

Solution 12.2

- (a) $\mathbf{X}(p \wedge q) \wedge \mathbf{XXG}(\neg p \wedge q)$
- (b) $\mathbf{FG}(\neg p \land q)$
- (c) $\mathbf{F}(\neg p \land \neg q)$
- (d) $\mathbf{G}p \wedge \mathbf{F}q$
- (e) $(p \land \neg q) \mathbf{U} ((\neg p \land q) \mathbf{U} \mathbf{G} (\neg p \land \neg q))$

Solution 12.3

- (a) $\mathbf{F}q \to (\neg p \ \mathbf{U} \ q)$
- (b) $\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \land p))$
- (c) $\mathbf{G}((q \wedge \mathbf{XF}r) \to \mathbf{X}(p \mathbf{U} r))$
- (d) $\mathbf{G}(\neg r) \wedge \mathbf{G}(p \leftrightarrow \neg q) \wedge p \wedge \mathbf{G}(p \rightarrow \mathbf{X}q) \wedge \mathbf{G}(q \rightarrow \mathbf{X}p)$

Solution 12.4

- $p \mathbf{W} q \equiv \mathbf{G} p \lor (p \mathbf{U} q)$. Follows immediately from the definitions.
- $\mathbf{G}p \lor (p \mathbf{U} q) \equiv \mathbf{F} \neg p \to (p \mathbf{U} q).$ We have: $\mathbf{G}p \lor (p \mathbf{U} q) \equiv \neg(\mathbf{F} \neg p) \lor (p \mathbf{U} q) \equiv \mathbf{F} \neg p \to (p \mathbf{U} q).$
- $\mathbf{G}p \lor (p \mathbf{U}q) \equiv p \mathbf{U} (q \lor \mathbf{G}p)$. Assume $\sigma \models \mathbf{G}p \lor (p \mathbf{U}q)$ holds. If $\sigma \models \mathbf{G}p$, then $\sigma \models \varphi \mathbf{U} (\psi \lor \mathbf{G}p)$ for every φ, ψ . If $\sigma \models p \mathbf{U}q$, then $\sigma \models p \mathbf{U} (q \lor \psi)$ for every ψ .

Assume $\sigma \models p \mathbf{U} (q \lor \mathbf{G}p)$. Then there exists $k \ge 0$ such that $\sigma^k \models q \lor \mathbf{G}p$ and $\sigma^i \models p$ for all $0 \le i < k$. If $\sigma^k \models q$, then $\sigma \models p \mathbf{U} q$. If $\sigma^k \models \mathbf{G}p$, then $\sigma^i \models p$ for all $0 \le i$, and so $\sigma \models \mathbf{G}p$. So $\sigma \models \mathbf{G}p \lor (p \mathbf{U} q)$. Or simply, using the fact given in the lecture that $\varphi \mathbf{U} (\psi_1 \lor \psi_2) \equiv (\varphi \mathbf{U} \psi_1) \lor (\varphi \mathbf{U} \psi_2)$, we have: $p \mathbf{U} (q \lor \mathbf{G}p) \equiv (p \mathbf{U} q) \lor (p \mathbf{U} \mathbf{G}p) \equiv (p \mathbf{U} q) \lor \mathbf{G}p \equiv \mathbf{G}p \lor (p \mathbf{U} q)$