Automata and Formal Languages — Exercise Sheet 11

Exercise 11.1

Construct the intersection of the two following Büchi automata:

Exercise 11.2

Consider the following Büchi automaton B over $\Sigma = \{a, b\}$:

- (a) Sketch dag($abab^{\omega}$) and dag($(ab)^{\omega}$).
- (b) Let r_w be the ranking of dag(w) defined by

$$r_w(q,i) = \begin{cases} 1 & \text{if } q = q_0 \text{ and } \langle q_0,i \rangle \text{ appears in } \operatorname{dag}(w), \\ 0 & \text{if } q = q_1 \text{ and } \langle q_1,i \rangle \text{ appears in } \operatorname{dag}(w), \\ \bot & \text{otherwise.} \end{cases}$$

Are $r_{abab\omega}$ and $r_{(ab)\omega}$ odd rankings?

- (c) Show that r_w is an odd ranking if and only if $w \notin L_{\omega}(B)$.
- (d) Construct a Büchi automaton accepting $\overline{L_{\omega}(B)}$ using the construction seen in class. *Hint*: by (c), it is sufficient to use $\{0, 1\}$ as ranks.

Exercise 11.3

Show that for every DBA A with n states there is an NBA B with 2n states such that $B = \overline{A}$. Explain why your construction does not work for NBAs.

Exercise 11.4

Give Büchi automata for the following $\omega\text{-languages:}$

- $L_1 = \{ w \in \{a, b\}^{\omega} : w \text{ contains infinitely many } a's \},$
- $L_2 = \{ w \in \{a, b\}^{\omega} : w \text{ contains finitely many } b$'s $\},$
- $L_3 = \{ w \in \{a, b\}^{\omega} : \text{each occurrence of } a \text{ in } w \text{ is followed by a } b \},$

and intersect these automata. Decide if this automaton is the smallest Büchi automaton for that language.

Solution 11.2

(a) $dag(abab^{\omega})$:

(b) • r is not an odd rank for dag $(abab^{\omega})$ since

 $\langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_1, 4 \rangle \xrightarrow{b} \langle q_1, 5 \rangle \xrightarrow{b} \cdots$

is an infinite path of $dag(abab^{\omega})$ not visiting odd nodes infinitely often.

• r is an odd rank for $dag((ab)^{\omega})$ since it has a single infinite path:

$$\langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_0, 4 \rangle \xrightarrow{a} \langle q_0, 5 \rangle \xrightarrow{b} \cdots$$

which only visits odd nodes.

(c) \Rightarrow) Let $w \in L_{\omega}(B)$. We have $w = ub^{\omega}$ for some $u \in \{a, b\}^*$. This implies that

$$\langle q_0, 0 \rangle \xrightarrow{u} \langle q_0, |u| \rangle \xrightarrow{b} \langle q_1, |u| + 1 \rangle \xrightarrow{b} \langle q_1, |u| + 2 \rangle \xrightarrow{b} \cdots$$

is an infinite path of dag(w). Since this path does not visit odd nodes infinitely often, r is not odd for dag(w).

 \Leftarrow) Let $w \notin L_{\omega}(B)$. Suppose there exists an infinite path of dag(w) that does not visit odd nodes infinitely often. At some point, this path must only visit nodes of the form $\langle q_1, i \rangle$. Therefore, there exists $u \in \{a, b\}^*$ such that

$$\langle q_0, 0 \rangle \xrightarrow{u} \langle q_1, |u| \rangle \xrightarrow{b} \langle q_1, |u| + 1 \rangle \xrightarrow{b} \langle q_1, |u| + 2 \rangle \xrightarrow{b} \cdots$$

This implies that $w = ub^{\omega} \in L_{\omega}(B)$ which is contradiction.

(d) Recall that we construct an NBA with an infinite number of states whose runs on an ω-word w are the rankings of dag(w). The automaton accepts a ranking R iff every infinite path of R visits nodes of odd rank i.o. By (c), for every w ∈ {a, b}^ω, if dag(w) has an odd ranking, then it has one ranging over 0 and 1. Therefore, it suffices to execute CompNBA with rankings ranging over 0 and 1 (and our NBA is now finite). We obtain the following Büchi automaton, for which some intuition is given below:

Any ranking r of dag(w) can be decomposed into a sequence lr_1, lr_2, \ldots such that $lr_i(q) = r(\langle q, i \rangle)$, the level i of rank r. Recall that in this automaton, the transitions $\begin{bmatrix} lr(q_0)\\ lr(q_1) \end{bmatrix} \xrightarrow{a} \begin{bmatrix} lr'(q_0)\\ lr'(q_1) \end{bmatrix}$ represent the possible next level for ranks r such that $lr(q) = r(\langle q, i \rangle)$ and $lr'(q) = r(\langle q, i + 1 \rangle)$ for $q = q_0, q_1$.

The additional set of states in the automaton represents the set of states that "owe" a visit to a state of odd rank. Formally, the transitions are the triples $[lr, O] \xrightarrow{a} [lr', O']$ such that $lr \xrightarrow{a} lr'$ and $O' = \{q' \in \delta(O, a) | lr'(q') \text{ is even} \}$ if $O \neq \emptyset$, and $O' = \{q' \in Q | lr'(q') \text{ is even} \}$ if $O = \emptyset$.

Finally the accepting states of the automaton are those with no "owing" states, which represent the *breakpoints* i.e. a moment where we are sure that all runs on w have seen an odd rank since the last breakpoint.

 \star It is enough to only consider the blue states, as any other state cannot reach a level in which there is an odd rank; descendants of *dag* states with rank 0 can never be assigned an odd rank.

Solution 11.3

Observe that A rejects a word w iff its *single* run on w stops visiting accepting states at some point. Hence, we construct an NBA B that reads a prefix as in A and non deterministically decides to stop visiting accepting states by moving to a copy of A without its accepting states.

More precisely, we assume that each letter can be read from each state of A, i.e. that A is complete. If this is not the case, it suffices to add a rejecting sink state to A. The NBA B consists of two copies of A. The first copy is exactly as A. The second copy is as A but restricted to its non accepting states. We add transitions from the first copy to the second one as follows. For each transition (p, a, q) of A, we add a transition that reads letter a from state p of the first copy to state q of the second copy. All states of the first copy are made non accepting and all states of the second copy are made accepting. Note that B contains at most 2n states as desired.

Here is an example of the construction:

This construction does not work on NBAs. Indeed, we have $A = B = \{a^{\omega}\}$ below:

Solution 11.4 The following Büchi automata respectively accept L_1, L_2 and L_3 :

Taking the intersection of these automata leads to the following Büchi automaton:

 \bigstar Note that the language of this automaton is the empty language.