Automata and Formal Languages - Exercise Sheet 10

Exercise 10.1

Give deterministic Rabin automata and Muller automata for the following language:

$$
L=\left\{w \in\{a, b\}^{\omega}: w \text { contains finitely many } a \text { 's }\right\} .
$$

Exercise 10.2

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

Exercise 10.3

Consider the following automaton A :

(a) Interpret A as a Rabin automaton with acceptance condition $\left\{\left\langle\left\{q_{0}, q_{2}\right\},\left\{q_{1}\right\}\right\rangle\right\}$. Follow the approach from Exercise 10.2 to construct a Büchi automaton that recognizes the same language as A.
(b) Interpret A as a Muller automaton with acceptance condition $\left\{\left\{q_{1}\right\},\left\{q_{0}, q_{2}\right\}\right\}$. Use algorithms NMAtoNGA and $N G A t o N B A$ from the lecture notes to construct a Büchi automaton that recognizes the same language as A.

Exercise 10.4

Consider the class of non deterministic automata over infinite words with the following acceptance condition: an infinite run is accepting if it visits a final state at least once. Show that no such automaton accepts the language of all words over $\{a, b\}$ containing infinitely many a and infinitely many b.

Solution 10.1

- We give the following Rabin automaton with acceptance condition $\left\{\left(\left\{q_{1}\right\},\left\{q_{0}\right\}\right)\right\}$, i.e. where q_{1} must be visited infinitely often and q_{0} must be visited finitely often:

- We give the following Muller automaton with acceptance condition $\left\{\left\{q_{1}\right\}\right\}$, i.e. where precisely $\left\{q_{1}\right\}$ must be visited infinitely often:

Solution 10.2

NBA can be easily transformed into nondterministic Rabin automata (NRA) and vice versa, without any exponential blow-up.

NBA \rightarrow NRA. Just observe that a Büchi condition $\left\{q_{1}, \ldots, q_{k}\right\}$ is equivalent to the following Rabin condition $\left\{\left(\left\{q_{1}\right\}, \emptyset\right), \ldots,\left(\left\{q_{n}\right\}, \emptyset\right)\right\}$.

NRA \rightarrow NBA. Given a Rabin automaton $A=\left(Q, \Sigma, Q_{0}, \delta,\left\{\left\langle F_{0}, G_{0}\right\rangle, \ldots,\left\langle F_{m-1}, G_{m-1}\right\rangle\right\}\right)$, it follows easily that, as in the case of Muller automata, $L_{\omega}(A)=\bigcup_{i=0}^{m-1} L_{\omega}\left(A_{i}\right)$ holds for the NRAs $A_{i}=\left(Q, \Sigma, Q_{0}, \delta,\left\{\left\langle F_{i}, G_{i}\right\rangle\right\}\right)$. So it suffices to translate each A_{i} into an NBA and take the union of the obtained NBAs. Since an accepting run ρ of A_{i} satisfies $\inf (\rho) \cap G_{i}=\emptyset$, from some point on ρ only visits states of $Q \backslash G_{i}$. So ρ consists of an initial finite part, say ρ_{0}, that may visit all states, and an infinite part, say ρ_{1}, that only visits states of $Q \backslash G_{i}$. So we take two copies of A_{i}. Intuitively, A_{i}^{\prime} simulates ρ by executing ρ_{0} in the first copy, and ρ_{1} in the second. The condition that ρ_{1} must visit some state of F_{i} infinitely often is enforced by taking F_{i} as Büchi condition.

Solution 10.3

(a)

(b) We must first construct two generalized Büchi automata A and B for $\left\{q_{1}\right\}$ and $\left\{q_{0}, q_{2}\right\}$ respectively. Automaton A is as follows with acceptance condition $\left\{\left\{q_{1}\right\}\right\}$:

Automaton B is as follows with acceptance condition $\left\{\left\{q_{0}\right\},\left\{q_{2}\right\}\right\}$:

The resulting generalized Büchi automaton is the union of A and B. Note that A is essentially already a standard Büchi automaton, it suffices to make state $\left[q_{1}, 1\right]$ accepting. However, it remains to convert B into a standard Büchi automaton B^{\prime} :

\star Since Büchi automata can have multiple initial states, we can also simply take the disjoint union of both automata, i.e. have them side by side instead of adding a single new initial.

Solution 10.4

Suppose there is such an automaton $B=\left(Q,\{a, b\}, \delta, Q_{0}, F\right)$ recognizing L. Since $w=\left(a b^{|Q|}\right)^{\omega}$ belongs to L, there exist $u, v \in\{a, b\}^{*}, q_{\text {init }} \in Q_{0}, q_{\text {acc }} \in F$, and $q_{0}, q_{1}, \ldots q_{|Q|} \in Q$ such that $u v=\left(a b^{|Q|}\right)^{m} a$ for some $m \geq 1$, and

$$
q_{\text {init }} \xrightarrow{u} q_{\text {acc }} \xrightarrow{v} q_{0} \xrightarrow{b} q_{1} \xrightarrow{b} \cdots \xrightarrow{b} q_{|Q|}
$$

By the pigeonhole principle, there exist $0 \leq i<j \leq|Q|$ such that $q_{i}=q_{j}$. Therefore,

$$
q_{\text {init }} \xrightarrow{u} q_{\mathrm{acc}} \xrightarrow{v b^{i}} q_{i} \xrightarrow{b^{j-i}} q_{j} \xrightarrow{b^{j-i}} q_{j} \xrightarrow{b^{j-i}} \cdots
$$

We conclude that $u v b^{i}\left(b^{j-i}\right)^{\omega}$ is accepted by B, which is a contradiction.

