
Technische Universität München Winter term 2020/21
Prof. J. Esparza / M. Lazić / C. Weil-Kennedy I7

Automata and Formal Languages — Exercise Sheet 8

Exercise 8.1

(a) Let 0 ≤ m < n. Give an MSO formula Modm,n such that Modm,n(i, j) holds whenever |wiwi+1 · · ·wj | ≡
m (mod n), i.e. whenever j − i+ 1 ≡ m (mod n).

(b) Let 0 ≤ m < n. Give an MSO sentence for am(an)∗.

(c) Give an MSO sentence for the language of words such that every two b’s with no other b in between are
separated by a block of a’s of odd length.

Exercise 8.2

Consider the logic PureMSO(Σ) with syntax

ϕ := X ⊆ Qa | X < Y | X ⊆ Y | ¬ϕ | ϕ ∨ ϕ | ∃X. ϕ

Notice that formulas of PureMSO(Σ) do not contain first-order variables. The satisfaction relation of PureMSO(Σ)
is given by:

(w,J) |= X ⊆ Qa iff w[p] = a for every p ∈ J (X)
(w,J) |= X < Y iff p < p′ for every p ∈ J (X), p′ ∈ J (Y)
(w,J) |= X ⊆ Y iff p ∈ J (Y) for every p ∈ J (X)

with the rest as for MSO(Σ).

Prove that MSO(Σ) and PureMSO(Σ) have the same expressive power for sentences. That is, show that for
every sentence φ of MSO(Σ) there is an equivalent sentence ψ of PureMSO(Σ), and vice versa.

Exercise 8.3

1. Given a sentence ϕ of MSO(Σ) and a second order variable X not occurring in ϕ, show how to construct
a formula ϕX with X as free variable expressing “the projection of the word onto the positions of X
satisfies ϕ”. Formally, ϕX must satisfy the following property: for every interpretation J of ϕX , we have
(w,J) |= ϕX iff (w|J (X),J) |= ϕ, where w|J (X) denotes the result of deleting from w the letters at all
positions that do not belong to J (X).

2. Given two sentences ϕ1 and ϕ2 of MSO(Σ), construct a sentence Conc(ϕ1, ϕ2) satisfying L(Conc(ϕ1, ϕ2)) =
L(ϕ1) · L(ϕ2).

3. Given a sentence ϕ of MSO(Σ), construct a sentence Star(ϕ) satisfying L(Star(ϕ)) = L(ϕ)∗.

4. Give an algorithm RegtoMSO that accepts a regular expression r as input and directly constructs a
sentence ϕ of MSO(Σ) such that L(ϕ) = L(r), without first constructing an automaton for the formula.

Exercise 8.4

Construct a finite automaton for the Presburger formula ∃y. x = 2y using the algorithms of the chapter.

Solution 8.1

(a) We want to express j − i+ 1 ≡ m (mod n), i.e. there exists l ≥ 0 such that j = i+m− 1 + l · n.

Modm,n(i, j) = ∃x (x = i+m− 1) ∧Multn(x, j)

where
Multn(x, j) = ∃X (j ∈ X) ∧ (∀z ∈ X [(z = x) ∨ ∃y ∈ X (z = y + n)])

Intuitively x is the smallest option for j, the one corresponding to l = 0. Set X is the positions that
are a multiple of n away from this x. The subformula x = i + m − 1 is syntactic sugar for ”x is the
(i+m− 1)-th position in the word” (since i,m are given, i+m− 1 is a constant). For example x = 3 is
short for ∃y first(y) ∧ ∃z z = y + 1 ∧ x = z + 1, where first(y) and z = y + 1 are classic abbreviations
you can find in the class notes.

(b) [(m = 0) ∧ (¬∃x first(x))] ∨ [∀x Qa(x) ∧ ∃x, y first(x) ∧ last(y) ∧Modm,n(x, y)].

(c)

∀x, y [(x < y) ∧Qb(x) ∧Qb(y) ∧ ∀z(x < z < y → ¬Qb(z))]→
[(∀z (x < z < y)→ Qa(z)) ∧ (∃x′, y′ (x′ = x+ 1) ∧ (y = y′ + 1) ∧Mod1,2(x′, y′))] .

As remarked in the tutorial, the subformula ∃x′, y′ (x′ = x + 1) ∧ (y = y′ + 1) ∧Mod1,2(x′, y′) can be
simplified to Mod1,2(x, y).

Solution 8.2

Given a sentence ψ of PureMSO(Σ), let φ be the sentence of MSO(Σ) obtained by replacing every subformula
of ψ of the form

X ⊆ Y by ∀x (x ∈ X → x ∈ Y)

X ⊆ Qa by ∀x (x ∈ X → Qa(x))

X < Y by ∀x ∀y (x ∈ X ∧ y ∈ Y)→ x < y

Clearly, φ and ψ are equivalent. For the other direction, let

empty(X) := ∀Y X ⊆ Y

and
sing(X) := ¬empty(X) ∧ ∀Y (Y ⊆ X ∧ ¬empty(Y))→ X = Y.

Let φ be a sentence of MSO(Σ). Assume without loss of generality that for every first-order variable x the
second-order variable X does not appear in φ (if necessary, rename second-order variables appropiately). Let
ψ be the sentence of PureMSO(Σ) obtained by replacing every subformula of φ of the form

∃x ψ′ by ∃X (sing(X) ∧ ψ′[X/x])
where ψ′[X/x] is the result of substituting X for x in ψ′

Qa(x) by X ⊆ Qa

x < y by X < Y
x ∈ Y by X ⊆ Y

Clearly, φ and ψ are equivalent.

Solution 8.3

1. We build ϕX using the following inductive rules:

• if ϕ = Qa(x), x < y, x ∈ X,¬ϕ1, ϕ1 ∨ ϕ2, then ϕX = ϕ

• If ϕ = ¬ϕ1 (resp. ϕ1 ∨ ϕ2), then ϕX = ¬ϕX
1 (resp. ϕX

1 ∨ ϕX
2).

• If ϕ = ∃x ψ, then ϕX = ∃x (x ∈ X ∧ ψX).

• If ϕ = ∃Y ψ, then ϕX = ∃Y
(
∀x x ∈ Y → x ∈ X

)
∧ ψX .

2. We take the formula

Conc(ϕ1, ϕ2) := ∃X ∃Y ∀x (x ∈ X ∨ y ∈ Y)

∧ ∀x∀y
(

(x ∈ X ∧ y ∈ Y)→ x < y)
)

∧ ϕX
1 ∧ ϕY

2

∨ ∀x false ∧ ϕ1 ∧ ϕ2

We add the last line because although sets of positions like X and Y can be empty, a word w satisfying
a sentence of the form ∃X ψ must be of length |w| > 0 so the empty word is not accounted for.

3. We first express that Y is a set of consecutive positions between two consecutive positions of X. Intuitively
our X is the set of positions at which starts each subword verifying ϕ.

Block(Y,X) := ∃x x ∈ X ∃z
(

Next(x, z,X) ∧ ∀y (y ∈ Y ↔ (x ≤ y ∧ y < z)
))

∨ Last(x,X) ∧ ∀y (y ∈ Y ↔ x ≤ y)

where Next(x, z,X) = z ∈ X ∧ ¬∃i ∈ X x < i ∧ i < z denotes that z comes just after x in X. The last
line of Block(Y,X) is for the case where we are considering the block from the last position of X to the
end of the word.

Now we express that there exists a set X of positions such that every subword between any two consecutive
positions of X satisfies ϕ.

Star(ϕ) := ∃X ∀x
(
first(x)→ x ∈ X

)
∧ ∀Y (Block(Y,X)→ ϕY)

∨ ∀z false

4. REtoMSO(r)

Input: Regular expression r

Output: Sentence ϕ such that L(ϕ) = L(r).

r = ∅ → ∃x x < x
r = ε → ∀x x < x
r = a → ∃x (first(x) ∧ last(x) ∧Qa(x))
r = r1 + r2 → REtoMSO(r1) ∨ REtoMSO(r2)
r = r1r2 → Conc(REtoMSO(r1),REtoMSO(r2))
r = r∗1 → Star(REtoMSO(r1))

Solution 8.4

We can rewrite the formula as ∃y. x− 2y = 0.

To build an automaton recognizing the lsbf encodings of the x that are solution of this formula, we can first
construct automata for the atomic formulas x−2y ≤ 0 and −x+2y ≤ 0, then intersect them and then project on
the x component. Here we will use EqtoDFA (section 10.2.1 of the lecture notes) to directly get an automaton
for x− 2y = 0 after which we just need to project on x.

We first use EqtoDFA to obtain an automaton for x− 2y = 0:

Iter. Current automaton W

0 0 {0}

1

0 1

[
0
0

] [
0
1

]
{1}

2 0 1

[
0
0

] [
1
1

][
0
1

]

[
1
0

]
∅

It remains to project the automaton on x, i.e. on the first component of the letters. We obtain:

0 1

0

0

1

1

which says that all encodings starting with a 0 are solutions.

