Automata and Formal Languages - Exercise Sheet 8

Exercise 8.1

(a) Let $0 \leq m<n$. Give an MSO formula $\operatorname{Mod}^{m, n}$ such that $\operatorname{Mod}^{m, n}(i, j)$ holds whenever $\left|w_{i} w_{i+1} \cdots w_{j}\right| \equiv$ $m(\bmod n)$, i.e. whenever $j-i+1 \equiv m(\bmod n)$.
(b) Let $0 \leq m<n$. Give an MSO sentence for $a^{m}\left(a^{n}\right)^{*}$.
(c) Give an MSO sentence for the language of words such that every two b 's with no other b in between are separated by a block of a 's of odd length.

Exercise 8.2

Consider the logic PureMSO (Σ) with syntax

$$
\varphi:=X \subseteq Q_{a}|X<Y| X \subseteq Y|\neg \varphi| \varphi \vee \varphi \mid \exists X . \varphi
$$

Notice that formulas of $\operatorname{PureMSO}(\Sigma)$ do not contain first-order variables. The satisfaction relation of $\operatorname{PureMSO}(\Sigma)$ is given by:

$$
\begin{array}{lllll}
(w, \mathcal{J}) & \models & =\subseteq Q_{a} & \text { iff } & w[p]=a \text { for every } p \in \mathcal{J}(X) \\
(w, \mathcal{J}) & \models X<Y & \text { iff } & p<p^{\prime} \text { for every } p \in \mathcal{J}(X), p^{\prime} \in \mathcal{J}(Y) \\
(w, \mathcal{J}) & \models X \subseteq Y & \text { iff } & p \in \mathcal{J}(Y) \text { for every } p \in \mathcal{J}(X)
\end{array}
$$

with the rest as for $\operatorname{MSO}(\Sigma)$.
Prove that $\operatorname{MSO}(\Sigma)$ and PureMSO (Σ) have the same expressive power for sentences. That is, show that for every sentence ϕ of $\operatorname{MSO}(\Sigma)$ there is an equivalent sentence ψ of $\operatorname{PureMSO}(\Sigma)$, and vice versa.

Exercise 8.3

1. Given a sentence φ of $\operatorname{MSO}(\Sigma)$ and a second order variable X not occurring in φ, show how to construct a formula φ^{X} with X as free variable expressing "the projection of the word onto the positions of X satisfies φ ". Formally, φ^{X} must satisfy the following property: for every interpretation \mathcal{J} of φ^{X}, we have $(w, \mathcal{J}) \models \varphi^{X}$ iff $\left(\left.w\right|_{\mathcal{J}(X)}, \mathcal{J}\right) \models \varphi$, where $\left.w\right|_{\mathcal{J}(X)}$ denotes the result of deleting from w the letters at all positions that do not belong to $\mathcal{J}(X)$.
2. Given two sentences φ_{1} and φ_{2} of $\operatorname{MSO}(\Sigma)$, construct a sentence $\operatorname{Conc}\left(\varphi_{1}, \varphi_{2}\right)$ satisfying $L\left(\operatorname{Conc}\left(\varphi_{1}, \varphi_{2}\right)\right)=$ $L\left(\varphi_{1}\right) \cdot L\left(\varphi_{2}\right)$.
3. Given a sentence φ of $\operatorname{MSO}(\Sigma)$, construct a sentence $\operatorname{Star}(\varphi)$ satisfying $L(\operatorname{Star}(\varphi))=L(\varphi)^{*}$.
4. Give an algorithm RegtoMSO that accepts a regular expression r as input and directly constructs a sentence φ of $\operatorname{MSO}(\Sigma)$ such that $L(\varphi)=L(r)$, without first constructing an automaton for the formula.

Exercise 8.4

Construct a finite automaton for the Presburger formula $\exists y . x=2 y$ using the algorithms of the chapter.

Solution 8.1

(a) We want to express $j-i+1 \equiv m(\bmod n)$, i.e. there exists $l \geq 0$ such that $j=i+m-1+l \cdot n$.

$$
\operatorname{Mod}^{m, n}(i, j)=\exists x(x=i+m-1) \wedge \operatorname{Mult}^{n}(x, j)
$$

where

$$
\operatorname{Mult}^{n}(x, j)=\exists X(j \in X) \wedge(\forall z \in X[(z=x) \vee \exists y \in X(z=y+n)])
$$

Intuitively x is the smallest option for j, the one corresponding to $l=0$. Set X is the positions that are a multiple of n away from this x. The subformula $x=i+m-1$ is syntactic sugar for " x is the $(i+m-1)$-th position in the word" (since i, m are given, $i+m-1$ is a constant). For example $x=3$ is short for $\exists y \operatorname{first}(y) \wedge \exists z z=y+1 \wedge x=z+1$, where $\operatorname{first}(y)$ and $z=y+1$ are classic abbreviations you can find in the class notes.
(b) $[(m=0) \wedge(\neg \exists x \operatorname{first}(x))] \vee\left[\forall x Q_{a}(x) \wedge \exists x, y \operatorname{first}(x) \wedge \operatorname{last}(y) \wedge \operatorname{Mod}^{m, n}(x, y)\right]$.
(c)

$$
\begin{aligned}
& \forall x, y\left[(x<y) \wedge Q_{b}(x) \wedge Q_{b}(y) \wedge \forall z\left(x<z<y \rightarrow \neg Q_{b}(z)\right)\right] \rightarrow \\
& \quad\left[\left(\forall z(x<z<y) \rightarrow Q_{a}(z)\right) \wedge\left(\exists x^{\prime}, y^{\prime}\left(x^{\prime}=x+1\right) \wedge\left(y=y^{\prime}+1\right) \wedge \operatorname{Mod}^{1,2}\left(x^{\prime}, y^{\prime}\right)\right)\right]
\end{aligned}
$$

As remarked in the tutorial, the subformula $\exists x^{\prime}, y^{\prime}\left(x^{\prime}=x+1\right) \wedge\left(y=y^{\prime}+1\right) \wedge \operatorname{Mod}^{1,2}\left(x^{\prime}, y^{\prime}\right)$ can be simplified to $\operatorname{Mod}^{1,2}(x, y)$.

Solution 8.2

Given a sentence ψ of $\operatorname{PureMSO}(\Sigma)$, let ϕ be the sentence of $\operatorname{MSO}(\Sigma)$ obtained by replacing every subformula of ψ of the form

$$
\begin{array}{lll}
X \subseteq Y & \text { by } & \forall x(x \in X \rightarrow x \in Y) \\
X \subseteq Q_{a} & \text { by } & \forall x\left(x \in X \rightarrow Q_{a}(x)\right) \\
X<Y & \text { by } & \forall x \forall y(x \in X \wedge y \in Y) \rightarrow x<y
\end{array}
$$

Clearly, ϕ and ψ are equivalent. For the other direction, let

$$
\operatorname{empty}(X):=\forall Y X \subseteq Y
$$

and

$$
\operatorname{sing}(X):=\neg \operatorname{empty}(X) \wedge \forall Y(Y \subseteq X \wedge \neg \operatorname{empty}(Y)) \rightarrow X=Y
$$

Let ϕ be a sentence of $\operatorname{MSO}(\Sigma)$. Assume without loss of generality that for every first-order variable x the second-order variable X does not appear in ϕ (if necessary, rename second-order variables appropiately). Let ψ be the sentence of $\operatorname{PureMSO}(\Sigma)$ obtained by replacing every subformula of ϕ of the form

$$
\begin{array}{lll}
\exists x \psi^{\prime} & \text { by } & \exists X\left(\operatorname{sing}(X) \wedge \psi^{\prime}[X / x]\right) \\
& \text { where } \psi^{\prime}[X / x] \text { is the result of substituting } X \text { for } x \text { in } \psi^{\prime} \\
Q_{a}(x) & \text { by } & X \subseteq Q_{a} \\
x<y & \text { by } & X<Y \\
x \in Y & \text { by } & X \subseteq Y
\end{array}
$$

Clearly, ϕ and ψ are equivalent.

Solution 8.3

1. We build φ^{X} using the following inductive rules:

- if $\varphi=Q_{a}(x), x<y, x \in X, \neg \varphi_{1}, \varphi_{1} \vee \varphi_{2}$, then $\varphi^{X}=\varphi$
- If $\varphi=\neg \varphi_{1}\left(\right.$ resp. $\left.\varphi_{1} \vee \varphi_{2}\right)$, then $\varphi^{X}=\neg \varphi_{1}^{X}\left(\right.$ resp. $\left.\varphi_{1}^{X} \vee \varphi_{2}^{X}\right)$.
- If $\varphi=\exists x \psi$, then $\varphi^{X}=\exists x\left(x \in X \wedge \psi^{X}\right)$.
- If $\varphi=\exists Y \psi$, then $\varphi^{X}=\exists Y(\forall x x \in Y \rightarrow x \in X) \wedge \psi^{X}$.

2. We take the formula

$$
\begin{aligned}
\operatorname{Conc}\left(\varphi_{1}, \varphi_{2}\right):=\exists X \exists Y & \forall x(x \in X \vee y \in Y) \\
& \wedge \forall x \forall y((x \in X \wedge y \in Y) \rightarrow x<y)) \\
& \wedge \varphi_{1}^{X} \wedge \varphi_{2}^{Y} \\
& \vee \forall x \text { false } \wedge \varphi_{1} \wedge \varphi_{2}
\end{aligned}
$$

We add the last line because although sets of positions like X and Y can be empty, a word w satisfying a sentence of the form $\exists X \psi$ must be of length $|w|>0$ so the empty word is not accounted for.
3. We first express that Y is a set of consecutive positions between two consecutive positions of X. Intuitively our X is the set of positions at which starts each subword verifying φ.

$$
\vee \operatorname{Last}(x, X) \wedge \forall y(y \in Y \leftrightarrow x \leq y)
$$

where $\operatorname{Next}(x, z, X)=z \in X \wedge \neg \exists i \in X x<i \wedge i<z$ denotes that z comes just after x in X. The last line of $\operatorname{Block}(Y, X)$ is for the case where we are considering the block from the last position of X to the end of the word.
Now we express that there exists a set X of positions such that every subword between any two consecutive positions of X satisfies φ.

$$
\begin{aligned}
\operatorname{Star}(\varphi):=\exists X \quad & \forall x(\operatorname{first}(x) \rightarrow x \in X) \wedge \forall Y\left(\operatorname{Block}(Y, X) \rightarrow \varphi^{Y}\right) \\
& \vee \forall z \text { false }
\end{aligned}
$$

4. REtoMSO(r)

Input: Regular expression r
Output: Sentence φ such that $L(\varphi)=L(r)$.

$$
\begin{aligned}
& r=\emptyset \rightarrow \exists x x<x \\
& r=\varepsilon \rightarrow \forall x x<x \\
& r=a \rightarrow \exists x\left(\operatorname{first}(x) \wedge \operatorname{last}(x) \wedge Q_{a}(x)\right) \\
& r=r_{1}+r_{2} \rightarrow \text { REtoMSO }\left(r_{1}\right) \vee \text { REtoMSO }\left(r_{2}\right) \\
& r=r_{1} r_{2} \rightarrow \operatorname{Conc}\left(\text { REtoMSO }\left(r_{1}\right), \text { REtoMSO }\left(r_{2}\right)\right) \\
& r=r_{1}^{*} \rightarrow \operatorname{Star}\left(\operatorname{REtoMSO}\left(r_{1}\right)\right)
\end{aligned}
$$

Solution 8.4

We can rewrite the formula as $\exists y . x-2 y=0$.
To build an automaton recognizing the lsbf encodings of the x that are solution of this formula, we can first construct automata for the atomic formulas $x-2 y \leq 0$ and $-x+2 y \leq 0$, then intersect them and then project on the x component. Here we will use EqtoDFA (section 10.2.1 of the lecture notes) to directly get an automaton for $x-2 y=0$ after which we just need to project on x.

We first use EqtoDFA to obtain an automaton for $x-2 y=0$:

It remains to project the automaton on x, i.e. on the first component of the letters. We obtain:

which says that all encodings starting with a 0 are solutions.

