Technische Universitat Miinchen Winter term 2020/21
Prof. J. Esparza / M. Lazié / C. Weil-Kennedy I7

Automata and Formal Languages — Exercise Sheet 7

Exercise 7.1

Let ¥ = {a,b}. Give formulations in plain English of the languages described by the following formulas of
FO(X), and give a corresponding regular expression:

(a) Jzx. first(x)
(b) Va. last(x)

(¢) =3z.Ty. (z <y A Qa(x) AQu(y)) AVz. (Qu(x) = Ty. # <y AQu(y)) Adw.—Fy. x <y

Exercise 7.2
Let ¥ = {a,b}.

(a) Give an MSO(X) sentence for aa™b*.
(

)
b) Give an MSO(X) sentence for the set of words with an a at every odd position.
(¢) Give a MSO(X) formula Odd_Card(X') expressing that the cardinality of the set of positions X is odd.
)

(d) Give an MSO(X) sentence for the set of words with an even number of occurrences of a’s.

Exercise 7.3
Recall the syntax of MSO(X):

p:=Qaz) |[z<ylzeX|[-p|leVe|[Ire|[3Xep
We have introduced y = z + 1 (“y is the successor position of 2”) as an abbreviation
y=xz+1l:=ax<yA-Fz(x<zAz<y)

Consider now the variant MSO'(X) in which, instead of an abbreviation, y = = + 1 is part of the syntax and
replaces z < y. In other words, the syntax of MSO'(X) is

pi=CQu(x) |[y=z+1|zeX|¢|pVe[drp[3IX ¢
Prove that MSO’(X) has the same expressive power as MSO(X) by finding a formula of MSO'(X) with the same

meaning as r < y.

Exercise 7.4

Let X be a finite alphabet. A language L C X* is star-free if it can be expressed by a star-free regular expression,
i.e. a regular expression where the Kleene star operation is forbidden, but complementation is allowed. For
example, * is star-free since X* =), but (aa)* is not.

(a) Give star-free regular expressions and FO(X) sentences for the following star-free languages with ¥ =
{a,b}:
(i) .

(ii) ¥*AX* for some A C 3.
(iii) A* for some A C .
) (ab)*.

)

(v) {w € ¥* | w does not contain aa }.

(iv

(b) Show that finite and cofinite languages are star-free.

(c) Show that for every sentence ¢ € FO(X), there exists a formula o™ (z,y), with two free variables x and y,
such that for every w € 1 and for every 1 <i < j < w,

wEeT) M wwiw Ee .
(d) Give a polynomial time algorithm that decides whether the empty word satisfies a given sentence of FO(X).

(e) Show that every star-free language can be expressed by an FO(X) sentence.

Solution 7.1
(a) All nonempty words. The regular expression is X%*

(b) The empty word and words of one letter. The regular expression is € + X.

(c) The first conjunct expresses that no a precedes a b. The corresponding regular expression is b*a*. The
second conjunct states that every b is followed (not necessarily immediately) by an a; this excludes the
words of b*. Finally, the third conjunct expresses that the last letter exists (and, by the second conjunct,
must be an a), which excludes the empty word. So the regular expression is b*aa*

Solution 7.2
(a) 32 Qa(z) A (Y2 Vy (Qal(2) A Qu(y)) = = <y)
(b) We first define a formula that asserts that a set contains the odd positions:
odd(P) =Vp: (p € P« (first(p) V3Iq: (p=q+2ANq € P))).
The sentence for the given language is:
30: (odd(O) A (Vp: p € O = Qu(p)).

(c) We first give formulas First(z, X) and Last(z, X') expressing that x is the first/last position among those
in X. We also give a formula Next(x,y, X) expressing that y is the succesor of z in X. It is then easy to
give a formula Odd(Y, X') expressing that Y is the set of odd positions of X (more precisely, Y contains the

first position among those in X, the third, the fifth, etc.). Finally, the formula Odd_card(X) expresses
that the last position of X belongs to the set of odd positions of X.

First(z,X) = zeXAVyy<z—y¢ X

Last(z,X) = ze€eXAVyy>z—y¢ X
Next(z,y,X) = ze€XAyeXAz<yA-Tzz<zAz<yAzeX

0dd(Y, X) = Vaz(z €Y « (First(z,X)V3IzJuz € Y A Next(z,u, X) A Next(u,z, X))
Odd_card(X) = 3Y (0dd(Y,X)AVz Last(z,X) »z€Y)AJzz e X

The subformula 3z 2 € X is added to Odd_card(X) to make sure that X is not the empty set. Indeed
3Y (0dd(Y,0) AVa Last(z,0) — 2 € Y) evaluates to true for Y the empty set (thanks to Jakob Schulz
for pointing this out).

(d) Let Even_card(X) = 3Y (Odd(Y, X) A Vz Last(z, X) — 2z ¢ Y). Then the solution is

3X: Even_card(X) A (Va: x € X + Qq(2)).

Solution 7.3
Observe that = < y holds iff there is a set Y of positions containing y and satisfying the following property:
every z € Y is either the successor of x, or the successor of another element of Y. Formally:

r<y:=3Y (yGY) A (szEY(—)(zx+l\/E|u€qu+l)>

Solution 7.4
(a) (i) 0-% and 3z first(z).
(ii) 0+ A-0and 3z V4 Qalz).
(iif) X*AX* and Vo \/, 4 Qa().
(iv) bX* 4+ X*a + Y*aaX* + L*bbX* and

(=3 first(x)) V
(B first(2) A Qa()) A (Fy last(y) A Qu(y)) A
(V2 ¥y (Qa(z) Ay =2+ 1) = Qo)) A (Yo Yy (Qu(z) Ay =2 +1) = Qa(y))) -

(v) ¥*aaX* and Vo Vy (Qu(z) Ay =z + 1) = =Qu(y).

Notice that the FO sentences presented here are correct even if ¥ is more than {a,b}. However the regular
expression of (iv) does require ¥ = {a, b}. For example if ¥ = {a, b, ¢} we would have ¢ in the language of
the star-free expression, but ¢ is not in (ab)*.

(b) Every finite language L = {wy, w2, ..., w,} can be expressed as wy + wgz + - -+ + wy,. For every cofinite
language L, there exists a finite language A such that L = A. Since star-free regular expressions allow for
complementation, cofinite languages are also star-free. O

(c) We build ¢™ using the following inductive rules:

(z <y)*(i,j) =
Qa(x)"(,7) = Qa()
(=) (4, 5) = =" (3, 4)
(Y1 Vo)t (6,5) = i (i,4) vV 3 (4, 5)
G) (6,7) =3z (i <z Az <j)AYT(i,]) .

(d)

Input: sentence ¢ € FO(X).
Output: € F ¢?
1 has-empty (¢) :
if ¢ = -1 then
return —has-empty ()
else if ¢ =11 V15 then
return has-empty(¢;) V has-empty (¥3)
else if ¢ =31 then
return false

N 0 00k WwoN

(e) Given a star-free regular expression r, we build sentence ¢, € FO(X) s.t. L(p,) = L(r) using the following
inductive rules:

r=0 — ¢.= 3z false

r=c¢ — @, =Vz false

r=a — @ = (3x true) A (Vo first(z) A Qq(z))

T=38 = O = s

T=581+82 = @r=Ps Vs,

r=s1-8 — ©r = (ps, A€ € L(s2)) V(g € L(s1) AN psy) V Bz, y, ¢, z first(z) Ay =y + 1 Alast(z) A
ei (@,y) Aol (Y, 2))

where € € L(s;) is syntactic sugar for true or false, and we can decide which of these it stands for using
the algorithm of (d).

